《赵老师讲平面几何(下)辅助线及通用的方法》是讲平面几何解题思路及其训练的系列丛书的下册,重点讲解平面几何中比较重要的辅助线及通用的几何解题方法。老师们通过学习此书可以掌握平面几何中难度技巧较高的方法,并能辅导学生举一反三、触类旁通,使学生掌握一整套行之有效的学习几何和解几何题的高层次方法。可以说,此书为学习平面几何提供了一把金钥匙,是全国广大中学生(特别是初中生)及中学数学教师的良师益友。
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
大学数学公式定理手册(概率统计)教材基础知识 重点难点点拨 规律技巧方法 完全依照大学课程教学要求进行编写,汇集经典版本的精华,囊括了《概率统计》中所有概念、公式、定理、解题方法以及在使用时要注意的问题,并精选典型例题帮助理解和记忆。灵活运用图表、网络图等形式使知识更加条理化、清晰化。名师点拨重点难点,举重若轻,化难为易。规律方法科学实用,能让读者举一反三,触类旁通。
编写此书,是希望为我国的大学生和数学爱好者提供一本提高数学素质(特别是分析问题和解题能力)的有益读物,同时也为高校数学教育提供一本很有特色的教学参考书。 本书共有三篇:篇,汇集了北京市大学生数学竞赛届至第二十一届的试题,并给出了解题思路及较详细的参考解答;第二篇,选编了我国部分省市和高校的大学生竞赛的试题,对其中大部分给出了较详细的参考解答、答案或提示,有的给出了解题思路;第三篇,编入了、第二届全国大学生数学竞赛及国外一些大学生数学竞赛的试题,并给出了解题思路及较详细的参考解答。
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
该书为高等理工科院校本科生“高等数学”课程的辅导书,其内容包括函数、极限、连续、导数、微分及其应用,不定积分、定积分及其应用、向量代数与空间解析几何、多元函数微分学及其应用、多元函数积分学,无穷级数和微分方程等。 全书内容全面,重点突出,共分为8个单元33个专题讲座进行辅导,例题详实典型,分析透彻清晰,方法实用而且富于创新,是天津大学著名数学教育专家蔡高厅教授、邱忠文教授多年从事高等数学教学经验和智慧的结晶。 本书适合于高等院校师生学习使用,不仅可以作为硕士研究生入学考试的复习参考书,而且可以作为网络高等教育、高等职业技术教育、成人高等教育以及函授教育的辅导教科书。
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程教材,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿大学、卡内基-梅隆大学、英国大学、德国汉堡大学、加拿大多伦多大学、荷兰 Vrije大学,印度理工学院在内的多个国家几十所高校采纳为教
编写此书,是希望为我国的大学生和数学爱好者提供一本提高数学素质(特别是分析问题和解题能力)的有益读物,同时也为高校数学教育提供一本很有特色的教学参考书。 本书共有三篇:篇,汇集了北京市大学生数学竞赛届至第二十一届的试题,并给出了解题思路及较详细的参考解答;第二篇,选编了我国部分省市和高校的大学生竞赛的试题,对其中大部分给出了较详细的参考解答、答案或提示,有的给出了解题思路;第三篇,编入了、第二届全国大学生数学竞赛及国外一些大学生数学竞赛的试题,并给出了解题思路及较详细的参考解答。
刘培杰数学工作室编译的《546个早期俄罗斯大 学生数学竞赛题》包括:各高等学校大学生数学竞赛 题(试),全苏大学生数学竞赛题(第二试), 大学生数学竞赛题和其他问题,解法、提示和答案, 附录。 正文包括546道俄罗斯大学生数学竞赛经典题, 附录又囊括了的部分大学生数学 竞赛题。 本书适合大中学生及数学爱好者参考阅读。
《超级通俗考研数学:攻坚站之高等数学》的一大特点是通俗易懂,深入浅出。主要内容包括高等院校高等数学课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点以及被忽视的一些潜在要点做出了全新诠释。另外,由于作者常年从事考研培训,《超级通俗考研数学:攻坚站之高等数学》还包括相当多的不传之秘——考研数学的套路。
大学物理实验是物理学的基础,是一门独立的、工科专业必修的基础实践课程,是各工科专业后续实验课程的基础,它所涉及的基本实验原理、实验操作与数据分析是工科人才所推荐的基本技能。本书不仅通过对实验物理现象的
本教材按照数学知识在解决工程实际问题中的作用分为四章,分别是函数与建模、变化率与曲率、物理量微元变化累积的计算、常微分方程。 本教材借鉴数学建模在提高学生数学实践能力和综合素质方面的成功经验,将数学基本知识、数学建模、数学实验及专业课程有机融合。