本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
本试卷根据《大学数学课程教学基本要求》及《全国硕士研究生招生考试数学考试大纲》编写而成,是配套高等教育出版社出版、同济大学数学科学学院编写的《高等数学上册》第八版的同步测试卷。 本试卷章节内容安排与教材同步,包含七章及期中、期末18套试卷及试卷习题解答,知识点思维导图(配套知识点视频),考研真题及解答。本试卷深度融合信息技术,配备了60个高等数学知识点视频、43个典型例题精解视频、12个同步测试卷解题视频,以及330余道基本概念自测题及解答。 本试卷可供大学一至四年级学生同步训练、期中期末考试自测及考研备考刷题用。
《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授,全书共分四册,包含了微积分、高等代数、常微分方程、复变函数论等内容,全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容:第二册包括多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第三册主要介绍复变函数论的一般理论;第四册主要介绍代数矩阵论的基本理论及其应用。 本书再版时得
《高等数学习题精选精解》由山东大学张天德教授、蒋晓芸教授主编。山东大学刘建亚教授、吴螓教授对全书作了仔细的校审,并对部分习题提出了更为精炒的解题思路。该书可以作为在读大学生同步学习的优秀辅导书,也可以
《高等数学(下册)/新核心理工基础教材》吸取其他高等数学教材精华部分,依照少学时高等数学教学的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性、针对性,便于少学时高等数学教学,也方便学生自学,各章、节知识点后配有相应习题,并附习题答案。 《高等数学(下册)/新核心理工基础教材》分上、下两册。下册包括多元函数微积分,重积分,无穷级数和微分方程四部分内容。 《高等数学(下册)/新核心理工基础教材》可作为少学时高等数学的教学用书,也可供广大读者进行自学。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书针对大学高等数学下学期的课程内容——向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、曲面积分以及无穷级数——精心设计了750道经典与创新题目,并给出了相应的解题思路。书中题型规划合理,覆盖题型全面,解题思路清晰,非常适合想要打牢高等数学基础,以及准备参加专升本、研究生考试的学生使用。
本书介绍代数不等式证明中的有效方法,兼顾经典方法与作者的心得体会,侧重命题与解题的思想。全书共11章,选取200多个国内外代数不等式的典型问题,配有不同的证明方法,以解析各类解题方法,并对部分问题加以拓展。本书可作为数学奥林匹克训练的参考教材,供高中及以上文化程度的学生、教师使用,也可供不等式爱好者和从事初等不等式研究的相关专业人员阅读参考。