本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。 内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。 习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
《离散数学及其应用》一书是介绍离散数学理论和方法的经典教材,已经成为采用率的离散数学教材,仅在美国就被600多所高校用作教材。并获得了极大的成功。第6版在前5版的基础上做了大量的改进,使其成为更有效的教学工具。本书基于该书第6版进行改编。保留了国内离散数学课程涉及的基本内容。更加适合作为国内高校计算机及相关专业本科生的离散数学课程教材。本书的具体改编情况如下:补充了章中的基础内容,详细描述了范式和标准型。删去了在其他课程中讲授的内容。如数论、离散概率、归纳和递归等。对于保留章节,删去了编号为偶数的练习题。删去了相关的历史资料。
本书系统地讨论了求解奇异和非奇异的大型稀疏线性代数方程组的计算方法和理论。内容包括:矩阵和线性方程组的预备知识,奇异线性方程组迭代法的理论基础,基本定常迭代法,多项式加速迭代法(预条件共轭梯度法,Chebyshev加速迭代法等),非对称线性方程组的迭代法(BICG,QMR,CGS,BICGSTAB和GMRES等),多分裂方法,双对角化方法等。本书可作为计算数学和应用数学研究生的基础读物。也可作为理工科相关学科以及从事科学与工程计算人员的参考书。
《抽象代数——方法导引》是一本介绍抽象代数基础知识和解题技巧的学习方法辅导书。在编者徐诚浩多次讲授这门课程的基础上,并根据历经三次修改的自编讲义,本书系统地整理了一些基本概念、重要定理与解题方法,特别还收集并改正了学生在初学阶段易犯的各类错误。本书在讲清各种概念的前提下,介绍了一些常用解题方法和技巧。在书中列出的定理是相当基本的,所给出的证明(包括定理和例题)是相当简洁的,并同时尽可能举一些反例作辅助说明。每看完一个证明,应找出关键步骤和所用技巧,然后归纳整理成便于记忆的几条,这无疑是收获甚大的学习方法。《抽象代数——方法导引》着重介绍抽象代数基础理论(群、环、体、格与扩域)中的各种解题方法与技巧,并配有近200个例题和300多道习题(基本上有提示和答案)。所列出的约90个比较重要的
本书讲述交换代数的基本理论和方法,在介绍经典的Noenther环和Dedekind整环理论的同时,重点突出了模与范畴以及局部化方法。这些内容都是学习代数几何和代数数论的公共代数基础,同时也为学习同调代数等其他数学学科打下基础。 学过近世代数课程的读者均可学习该教材。 本书可作为数学系研究生公共基础课教材和数学系高年级本科生选修课教材,也可供数学工作者参考。
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
本习书是与西安电子科技大学出版社出版的《离散数学》(方世昌编著)配套的习题集,但也可单独使用。本书包括数理逻辑、集合论、二元关系、函数、无限集合、代数、格与布尔代数、图论共8章的习题题解。本习题集可作为高等理工科院校计算机科学、工程和应用专业的教学参考书,也可供教师、研究生、高年级学生和有关人员作参考书。