本书从有限维空间线性算子的特征值出发, 采用类比、归纳等方式, 通过大量实例循序渐进地引入无穷维空间上线性算子的谱理论, 系统介绍并分析了有界线性算子、共轭算子、正常算子、自共轭算子、紧算子的结构, 讨论了上述这些有界线性算子的谱点分类、谱集的性质和谱分解定理. 进而对闭的线性算子、无界线性算子, 特别是在近代物理学、量子力学中有着深刻应用背景的微分算子的结构、亏指数、自共轭扩张和它们的谱分解加以分析.
数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣 或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间 他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基!
无
本书系统和全面地介绍了组合优化的基本理论和重要算法。全书共分22章,内容既包括图论、线性和整数规划以及计算复杂性等基础部分,又涵盖了组合优化中若干重要问题的经典结果和最新进展.除了对理论的深刻讨论外,书中还提供了丰富的研究文献和具有挑战性的习题。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点(一)——一些经典的几何特征点,三角形的特征点(二)——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。本书适合数学爱好者参考阅读。
《高中数学竞赛专题讲座》(辑)12种出版以来,反响强烈,深受广大读者喜爱,并收到了大量反馈信息。很多读者,包括一线竞赛辅导的教师和竞赛研究人员提出了许多宝贵的建设性意见,希望我们再组织出版一套以解题方法和解题策略为主的丛书。为了满足广大读者的需求,我们在全国范围‘内组织的数学奥林匹克教练编写了《高中数学竞赛专题讲座》(第二辑)共8种:《图论方法》、《周期函数与周期数列》、《代数变形》、《极值问题》、《染色与染色方法》、《递推与递推方法》、《组合构造》;考虑到配套,把’辑中《数学结构思想及解题方法》放在第二辑出版。 丛书的起点是高中阶段学生必须掌握的数学基本知识和全国数学竞赛大纲要求的一些基本的数学思想、方法,凡是对数学爱好的高中学生都有能力阅读。丛书的特点是: 1.充分吸
在把握阵列天线理论体系的基础上,本书重点介绍经典的、实用的分析与综合方法,为了使理论与工程实际相结合,书中采用相关综合方法设计的实际阵列天线,包括实物照片或仿真模型、仿真结果和实测结果。共8章,主要内容包括:直线阵列及其分析、直线阵列的综合理论与方法、平面阵列及其分析、平面阵列的综合理论与方法、阵列天线的优化综合理论及方法、相控阵天线基础、阵列天线的稀疏技术理论与方法,以及大间距平面阵栅瓣抑制的理论和方法等。本书提供配套电子课件。
本书的核心是以一种有助于理解和引人入胜的方式阐述经典初等论,关键结果的史料和重要性得到记述,在精心开展每个论题的基本材料之后,接着论述同一论更复杂的结果,本书的主要长处是包括了数论的种种应用,一旦需要的理论得以建立,应用就以灵活的方式编入教材,应用设计成有助于促进理论的扩展和阐明初等数论在不同方面的用处,数论广泛应用于密码学,经典密码、分组密码及序列密、公钥密码系统和密码协议都被包括在内,对计算机科学的其他应用包括整数的快速乘法、伪随机数及校验数字,对于许多其他领域的应用,例如调度、电话、昆虫学和动物学,也可在教材中找到。 本教材包括极为广泛和多种多样的习题,收入许多常规习题是为了训练基本技能,已注意将带有奇数编号和偶数编号的两种习题包含在这一类题中,大量中等