数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
这是《不等式的秘密》一书的第二卷,取名为《不等式的秘密(第2卷高级不等式)》。在本卷你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明。 在此,你可以找到证明不等式的现代方法:整合变量法、乎方分析法、反证法、归纳法和经典不等式的使用方法。正如你阅读过的本书卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能。 我们希望,作者范建熊倾注在本书关于不等式方面的热情和汗水对你有用。
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括第1章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
这是一本介绍组合数的书.高中阶段已经学习过排列与组合的基础知识,对于排列与组合有了初步的了解,但是还有许多问题,例如,组合恒等式如何证明?怎样利用组合数解决一些数列的有关问题?怎样确定组合数的奇偶性?怎样利用组合数进行因式分解? 怎样利用组合数研究不定方程的整数解的个数?怎样利用组合数计算空间分割的数目等.这些问题大家接触的并不多,但是每个中学生又都能解决,这本书就要对这样一些与组合数有关的数学问题做一些粗浅的介绍,以引起大家对组合数研究的兴趣.
本书内容包括三部分:集合论、图论、近世代数。全书共分十五章,讨论了集合及其运算、映射、关系、无穷集合及其基数、模糊集合论、图的基本概念、树和割集、连通度和匹配、平面图和图的着色、有向图、半群和幺半群、群、环和域、格、布尔代数。每节后配有难度不同的习题。 本书可用作高等学校计算机科学与技术/工程等专业的教材,也可供有关专业的科技人员参考。
用常规和母函数方法解决排列、组合、分配问题的技巧;用递推关系、容斥原理、棋盘多项式等求解计数问题的方法与技巧;图形可变换情况下染色方案的统计方法;存在性问题的证明方法与技巧。其中含实用例题300多个。
本书是第二版,较版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。本书是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和*理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;
《复半单李代数》源于作者1965年的讲义。该书前两部分是一个概述,幂零,可积的,半单李代数。复半单李代数包含在第三、四章。*后一章论及在没有证明的情况下,如何由李代数转向李群,这部分只是一个简单介绍。目次:幂零李代数和可积的李代数;半单李代数(一般定理);嘉当子代数;sl2及其形式;根系;半单李代数的结构;半单李代数的线性表示;复群和紧群;索引。读者对象:李群、拓扑和代数等相关专业的研究生。
《生物序列数值化表征模型的矩阵分解方法及其应用》以生物序列的数值化表征模型所涉及的矩阵分解为核心,以序列的特征信息提取为主要目标,在非序列比对(Aignment-free)的框架下,分别提出了针对DNA/蛋白质序列、基因组序列等的若干个不同的特征信息抽取模型,并将所抽取的特征信息应用于序列的相似度分析。本书取材广泛,内容新颖,理论与应用紧密结合。书中所介绍的生物序列的建模方法、矩阵分解抽取其特征信息的研究策略,可供读者在解决实际问题时予以借鉴。 本书适合生物信息学、图像处理、信号处理等领域有关科研人员参考使用。
《近世代数/21世纪数学精编教材·数学基础课系列》从代数学的发展简史出发,深入浅出地阐述近世代数的基本理论、基本问题和基本方法。全书共分为五章,内容包括:代数学发展简史、同态与同构、群、环和域等。 《近世代数/21世纪数学精编教材·数学基础课系列》每节主题鲜明,内容翔实丰富,既有理论阐述,又有实际应用举例,本书的另一特色在于以读者熟悉的高等代数知识作为背景知识,类比地引入近世代数中相应的概念,使读者能够更好地理解和掌握相关的内容,另外,不惜笔墨介绍代数学的发展简史,说明近世代数的产生、发展过程,这样既能激发学生学习的积极性和主动性,又方便教师根据历史线索,结合教学实际,有侧重地安排教学内容。 《近世代数/21世纪数学精编教材·数学基础课系列》每节配有适量的习题,书末附有习题答案
《模糊集合理论在社会科学中的应用》一书旨在引导社会科学研究者熟悉模糊集合与方法工作,以便在研究中使用它。本书介绍了模糊集合理论的基本概念及操作方法。作者从不同的社会科学学科里找出范例,并且尽量建立起模糊结合取向与传统数据分析技巧之间的关联性。
《线性代数附册学习辅导与习题全解(同济 第六版)/大学数学学习辅导丛书》在《工程数学 线性代数》第五版附册(即辅导书)的基础上修订而成,修订时对要求偏高的内容又作了一定程度的删节或改写;同时结合近年来的教学实践,加强了一些基本概念的讲解和基本运算的训练,使之更贴近 工科类本科数学基础课程教学基本要求 。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)等七个栏目。其中 释疑解难 显示出编者对课程内容的深刻理解和长期积累的丰富经验; 例题剖析与增补 充分开发出例题的内涵,并有助于读者掌握举一反三的学习方法; 习题解答 注重阐明饵题的思想和方法,并对全书习题作出规范解答。 《线性代数附册学习辅导与习题全解(同济 第
线性代数是理工、经济管理及医学各专业都必须开设的公共基础课程,是全国研究生入学考试必考的课程之一。 本练习册与同济大学编写的《线性代数》(第4版)教材相配套。每章配有内容小结、常用方法小结、练习题、自测题及参考答案。后配有8套模拟试题和参考答案,其中1~6套是为学生总复习时练习使用;7套、8套有一定难度,专为学习能力较强的同学提供,也可以作为考研复习时练习使用。
本书是普通高等教育“十一五”***规划教材《线性代数》(陈建龙等编)的配套教学辅导用书,同时其内容又自成相对独立的体系,因而适合更多读者的需要。《BR》 本书按《线性代数》的编排顺序逐章编写,共五章,每章的主体内容分为四节,分别是“预习建议”、“友情提醒”、“典型例题赏析”和“习题答案”。其中“友情提醒”包含了一些值得学生注意的地方,让初学者少走弯路。“典型例题赏析”收集了经典的题目作为例题,配以详细的讲解和点评,帮助学生巩固所学的知识、举一反三。“习题答案”注重阐明解题的思想方法,部分例题和习题还给出了多种解法,有助于教材内容的融会贯通。在附录中介绍了本课程的学习方法、解题方法以及初等变换的8个应用,并通过框图和表格的形式对本课程的知识点进行了概括,为学习线性代数课程的学生提供帮
抽象代数,又称近世代数,是综合院校、师范院校数学专业的基础课程,也是电子类等专业的选修课程。《抽象代数》以操作性较强的方式组织编排了供一学期抽象代数课程使用的内容。同时把因限于课时而不能在课堂内容展开的,但却是基本的、有强烈背景的若干问题编排为选读选讲材料,使得《抽象代数》除可操作性外还具有一定的可塑性。