《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
本教材在保留了部分传统的数学分析内容外,新增加了测度论、勒贝格积分、微分流形和流形上的积分等国外教材上常见的内容,这在国内教材上是不多见。本书的出版对高校数学分析课程改革和与国外数学分析教材接轨将起到示范和推动作用。上册内容为:集合与映射,实数与复数,极限,连续函数类,一元函数微分学,一元函数的黎曼积分。
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范学校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范院校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
《数学分析讲义(第3册)/北京高等教育精品教材》是作者在清华大学数学科学系(1987-2003)及北京大学数学科学学院(2003-2009)给本科生讲授数学分析课的讲稿的基础上编成的,一方面,作者力求以近代数学(集合论,拓扑,测度论,微分流形和微分形式)的语言来介绍数学分析的基本知识,以使同学尽早熟悉近代数学文献中的表述方式。另一方面在篇幅允许的范围内,作者尽可能地介绍数学分析与其他学科(特别是物理学)的联系,以使同学理解自然现象一直是数学发展的重要源泉,全书分为三册,册包括:集合与映射,实数与复数,极限,连续函数类,一元微分学和一元函数的Riemann积分;第二册包括:点集拓扑初步,多元微分学,测度和积分;第三册包括:调和分析初步和相关课题,复分析初步,欧氏空间中的微分流形,重线性代数,微分形式和欧氏空
本书版为*“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材和*工科数学学科“九五”规划教材,同时又是普通高等教育“九五”*重点教材。第二版是普通高等教育“十五”*规划教材,保持了版的框架结构和主要特色。全书分为上下两册。上册主要内容为一元微积分和无穷级数,下册主要内容为多元函数微积分,常微分方程组,无限维分析入门。 本书在编写时,适当降低了某些内容的难度,并改写了部分内容,使得整体思路更加明确,更易被读者接受。从应用的需要考虑,增添了相关的内容。在习题的选配上,分为A、B两类,并增加了基本训练习题。 本书可供高等理工科院校对数学要求较高的非数学类专业本科生教材,也可供其他专业选用和社会读者阅读。
本书在1983年出版的第二版的基础上做了全面修订。修订的重点是概念的叙述和定理的论证以及某些章节内部结构的调整,同时,所有章节在文字上都重新梳理了一遍。 本书分上下两册,上册内容为极限初论、极限续论、单变量微分学、单变量积分学;下册内容为数项级数和反常积分、函数项级数、多元函数的极限论、多变量微分学、含参变量的积分和反常积分、多变量积分学。 本书可作为一般院校数学类专业的教材,也可作为工科院校以及经济管理类院系中数学要求较高的专业的数学教材。
《数值分析及实验(第二版)》结合Matlab的使用全面介绍了常用的数值计算方法与技术。内容包括线性代数方程组的数值解法、方程(组)求根的迭代法、插值法、曲线拟合和函数逼近初步、数值微积分、矩阵特征值与特征向量的计算等,每部分均有代表性的例题和习题。《数值分析及实验(第二版)》*明显的特点是对数值分析理论部分着重阐明构造算法的基本思想与原理,既注重理论的严谨性,又注重方法的实用性。
《数学分析习题精解(多变量部分)》主要通过典型例题陈述数学分析中典型解题方法和技巧,内容主要涉及多变量微积分,《数学分析习题精解(多变量部分)》按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
数值分析 也叫 计算方法 ,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
本书介绍了非线性系统理论。非线性系统理论与线性系统理论相平行、相对应,但更具一般性。非线性系统理论建立在状态空间分析方法的基础上,所使用的主要数学工具是微分几何。微分几何方法已被证明是分析和设计非线性系统的卓有成效的和强有力的工具。本书内容由浅入深,概念清晰,理论严谨,深度适当,体系相对完整,侧重于系统地介绍基础理论,同时也兼顾实际应用。书中后一部分,从工程实用角度,深入地、仔细地分析了一些有通用性的实例,包括电机系统、单机和多机电力系统、机械手系统、飞行器系统(潜器和水下机器人系统)等。 本书是供研究生用的非线性几何理论的入门书,主要面向初涉足非线性理论领域的读者,为进一步提高和深入研究提供理论基础。 本书可作为工科院校相关学科博士研究生和硕士研究生的教材,也可供相关学科
本书是哈尔滨工业大学所编“普通高等教育‘十一五’*规划教材”——《大学数学》丛书中的一本,全套丛书包括《工科数学分析(第三版)(上、下)》、《线性代数与空间解析几何(第三版)》、《概率论与数理统计》、《数值分析》共5本教材。 《工科数学分析(第三版)》是在第二版的基础上修改而成的,分上、下两册。上册共八章:函数,极限与连续,导数与微分,微分中值定理,不定积分,定积分,导数与定积分的应用,微分方程。下册共六章:多元函数微分学,多元函数积分学,第二型曲线积分与第二型曲面积分、向量场,无穷级数,复变函数初步,微分几何基础知识。每章后有供自学的综合性例题,并以附录形式开了一些新知识窗口。 本书可作为工科大学本科一年级新生数学课教材,也可作为准备考工科硕士研究生的人员和工程技术人员的参考
《常微分方程与动力系统概论(修订版)》侧重从应用的角度出发介绍常微分方程和动力系统的基本理论和方法,力求概念清晰,理论有据,方法实用,并将这些方法和微分方程建模、图像分析结合起来。本书首先简要介绍常微分方程一些基本理论和方法,为后面学习动力系统理论做铺垫;然后介绍了线性系统、自治系统中的非线性现象等动力系统的基本理论及应用,把常微分方程理论与动力系统的知识有机地融为一体。书中有大量的例题、习题,并辅以相图分析,图文并茂,便于读者理解。本书取材适当,难易适度,是一本很好的学习动力系统的入门书。 贺小明和彭名书主编的《常微分方程与动力系统概论(修订版)》可作为高等学校数学系高年级及研究生教材或教学参考书,也可供物理、化学、生物等有关专业的科技工作者参考。
《变分法:理论与应用》不仅对变分法的基本概念、理论和方法作了严谨的介绍和论述,而且特别注重介绍变分法在解决椭圆型方程中的应用。《变分法:理论与应用》中的许多证明都被有意识地分解成几个步骤,每个步骤都给出了目标,这样不仅利于读者理解证明思路和过程,而且更便于总结命题条件与结论之间的因果关系。《变分法:理论与应用》在内容上尽量到自封,只是在极少数地方引用了代数拓扑和泛涵分析中的命题,也尽量给出参考文献,以便读者查阅。 《变分法:理论与应用》可作为数学系分析类研究生专业教材,也可作为数学系高年级本科生选修课教材。
《变分方法的理论及应用》第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Caristi不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函极值问题,分别用Ekeland变分原理和下降流线方法给出了著名的山路定理,应用山路定理和小作用原理研究二阶半线性椭圆方程边值问题,同时包括与单调梯度映射相关的变分方法;后第11章致力于变分方法在具体工程问题中的应用。 《变分方法的理论及应用》的内容适用于数学类相关研究人员、研究生和高年级本科生阅读,也可供相应的工程类研究人员参考。
陈志华编著的《近代分析基础(第2版)》是一本综合性的分析教材,全书分为五章:分别为一般拓扑、线性泛函分析、sobolev空间、线性算子的谱分析及非线性分析简介,其中每章均独立成篇而相互又有关联。 《近代分析基础(第2版)》主要读者对象为数学专业高年级学生与硕士研究生,同时也可供其他理工科高年级学生、研究生、青年教师及相关工程技术人员学习参考之用。本书的取材与编写都充分考虑使本书能适于自学,为有兴趣于此的读者提供一本适于自学的读本。
《数学分析(上册)/普通高等教育“十二五”规划教材》的编写注重理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重选题的广度与梯度,达到从一题到一类,从一类到一系列的效果.《数学分析(上册)/普通高等教育“十二五”规划教材》内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学。《数学分析(上册)/普通高等教育“十二五”规划教材》内容包括映射与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数及其完备性、不定积分、定积分、定积分的应用和广义积分等。书后附有习题答案。
本书将散见于不同书籍中的有关傅里叶变换的内容汇集在一起,全面完整地论述了傅里叶变换的理论和方法,全书共分9章。在第1章信号基本概念的基础上,第2章介绍了连续傅里叶级数变换和连续傅里叶变换,第3章介绍了拉普拉斯变换,第4章介绍了离散傅里叶级数变换和序列傅里叶变换,第5章介绍了Z变换,第6章介绍了离散傅里叶变换。在介绍了所有7种傅里叶变换后,第7章和第8章集中介绍了离散傅里叶交换的各种快速算法。后一章简要地介绍了一般的变换理论以及一般变换的主要应用。 本书对从事通信、雷达、声纳、导航、遥测、遥感、遥控以及各种信号处理工作的信息科学和技术工作的学者、研究人员以及初学者将是一本好的参考书。
《数学分析习题课讲义2》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
《数学分析习题课讲义1》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
本书是以大学理工科的《高等数学》的教学大纲为依据,结合大学数学教学大纲并参考主流教材编写而成。内容简练明确,解决问题透彻明了,易学易用。本书的结构特点是,在每章的开头,首先列出本章的知识要点,然后扼要论述知识要点分析和学习要求,随后通过丰富的典型例题,详细讲述解析方法和答案,后附有极具针对性的习题和自测。 本丛书具有三“导”合一的特点:集中知识要点“导”学,典型例题与习题“导”讲,知识点学习和自测紧密“导”练。 本书适合学习《高等数学》的大学理工科学生使用。
《数值*化方法》的内容包括求解光滑非线性无约束和有约束*化问题的基本方法和基本性质以及方法的数值试验结果。 《数值*化方法》在选材上, 注重*化方法的基础性与实用性; 在内容的处理上, 注重由浅入深、循序渐进; 在叙述上力求清晰、准确、简明易懂. 为了帮助读者理解和巩固所学的内容, 在第二章至第九章各章之后配置了丰富的习题和上机习题, 并在书末附有大部分习题的答案和提示。 《数值*化方法》可作为高等院校计算科学专业以及相关专业本科生的教材或教学参考书, 也可供从事科学与工程计算的科技人员参考。