《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
Sincethepublicationofmylecturenotes,FunctionalDifferentialEquationsintheAppliedMathematicalSciencesseries,manynewdevelopmentshaveoccurred.Asaconsequence,itwasdecidednottomakeafewcorrectionsandadditionsforasecondeditionofthosenotes,buttopresentamoreprehensivetheory.Thepresentworkattemptstoconsolidatethoseelementsofthetheorywhichhavestabilizedandalsotoincluderecentdirectionsofresearch.
本书是复分析领域近年来产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美,书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。 本书可作为大学本科生或研究生的复分析课程教材或参考书。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
本书是与西安交通大学编写的《复变函数》(第四版)相配套的学习辅导书按原教材各章的顺序,每章包括重点及知识点辅导与精析、难点盈典型例题辅导与精析、考点及考研真题辅导与精析,课后习题解答口部分本书重在通过对内容和方法进行归纳总结,把基本理论、基本方法融于典型范例中,注重分析解题思路,揭示解题规律,解决学习困难,引导读者思考,培养学习兴趣 本书既可作为非数学类专业理丁科本科生学习复变函数课程的参考书,也可作为从事复变函数教学工作者的教学参考书
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
This two-volume book is devoted to mathematicaltheory,numerics and applications of hyperbolic problems.Hyperbolicproblems have not only a long history but alsoextremely richphysical background.The development ishighly stimulated by theirapplications to Physics,Biology,and Engineering Sciences;inparticular,by the design ofeffective numerical algorithms.Due torecent rapiddevelopment of puters,more and more scientistsusehyperbolic partial differential equations andrelatedevolutionary equations as basic tools when proposingnewmathematical models of various phenomena and relatednumericalalgorithms. This book contains 80 original research and review paperswhichare written by leading researchers and promisingyoungscientists,which cover a diverse range of multidisciplinary topicsaddressing theoretical,modeling andputational issues arisingunder the umbrella of"Hyperbolic Partial Differential Equations".Itis aimed atmathematicians,researchers in applied sciences andgraduatestudents.
泛欧几何是屏幕几通过纵横像素段显示直线和曲线,一段数点,自然快捷。 泛欧几何是键盘几何,通过数码串输入图形和汉字,一图一串,一字一码,准确简捷。 在泛欧几何中,直线为n,n 1交错数列,曲线为分段交错数列,图(graphs)为交错路段,这些非极限和矩阵基础上的整数表达式,为普及计算机图形开拓了新路子(中国版的Logo)。 直线、曲线的八卦定理和中文八族周所揭示的拓扑相似性,引发了几何语言化和语言几何化的探索,为汉字本体(ontology)与中文语义网的发展拓宽了理论基础。 “几何是数学思考的核心。它是一个富于直观的领域,而且(可以说)新发现是非专家的能力范围之内。”(《计算机几何导论》,科学出版社,1992) 通过图文泛模的发现和编码,泛欧几何展示了数学语言与自然语言相互融合、与时俱进的新途径,本书立论
李世杰和李盛编著的《函数元不等式理论及其应用》从不等式的函数解出发,给出了函数元不等式的概念,讨论了一些基本运算法则,归纳了函数元不等式的常用解法和基本思想,研究了一些具有特殊结构的函数元不等式、正整数集上的函数元不等式和N维空间的函数元不等式的解与性态,书末给出了函数元不等式及其求解方法的应用。本书理论性与实用性相结合,既注重函数元不等式基础理论的阐述,又对准备参加高考和各级各类数学竞赛的学生有所帮助,书中特意编制了大量的可作为数学竞赛试题和高考试题的函数元不等式思考题,实际上书中对函数元不等式研究的许多成果,与数学竞赛题联系密切,也可作为大学和中学数学竞赛原创性试题的一个新的来源。
本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that ests between several relatedareas of analysis.These areas are:the estence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the moncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.