本书为普通高等教育“十二五”规划教材。全书共九章,主要内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换,数学软件在复变函数与积分
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
本书主要内容选择力图通俗易懂,包括复变函数、积分变换及Matlab应用简介3个部分共9章,其中靠前~2章介绍复变函数的基本概念;第3~6章介绍复变函数的基础理论,包括了复变函数的积分、级数、留数、共形映射等;第7~8章主要介绍了,两种积分变换理论:傅里叶变换和拉普拉斯变换;第9章介绍Matlab及其在求解复变函数与积分变换问题中的应用。每章均有小结并配有习题。 本书适合作为高等院校工科各专业,尤其是自动控制、通信、电子信息、机械工程、计算机等本科专业教材,也可供科技、工程技术人员阅读参考。
本书首先介绍了集合论和拓扑学的基础知识,然后结合微积分的发展简史与不完善之处,从分析学的角度系统地介绍了实变函数的基本理论框架。全书所列内容均由作者多年讲义结合国际上近期新的《实分析》教材内容整理而成
《复变函数简明教程》是为高等院校数学各专业“复变函数”课程编写的教材。它的先修课程是数学分析或高等数学。本书共分八章,内容包括:复平面,扩充复平面,解析函数,分式线性变换,cauchy定理,cauchy公式,幂级数,大模原理,Schwarz引理,Laurent级数,留数及其应用,调和函数,解析开拓,Riemann存在定理等。《复变函数简明教程》在选材上注重少而精,突出了复变量与实变量之间的关系、级数和积分表示方法,使之尽可能地满足数学各专业的需求,并充分地反映了复变函数的核心内容;在内容的处理上,体现了实分析与复分析的相同与不同之处,既注重定理的严格证明,又充分考虑了读者学习高等数学时的不同背景;在内容安排上,由浅入深、循序渐进、深入浅出,便于教学与自学;在叙述表达上,力求严谨精炼、清晰易读。为拓广所学知识,《复
本书主要内容选择力图通俗易懂,包括复变函数、积分变换及Matlab应用简介3个部分共9章,其中靠前~2章介绍复变函数的基本概念;第3~6章介绍复变函数的基础理论,包括了复变函数的积分、级数、留数、共形映射等;第7~8章主要介绍了,两种积分变换理论:傅里叶变换和拉普拉斯变换;第9章介绍Matlab及其在求解复变函数与积分变换问题中的应用。每章均有小结并配有习题。 本书适合作为高等院校工科各专业,尤其是自动控制、通信、电子信息、机械工程、计算机等本科专业教材,也可供科技、工程技术人员阅读参考。
本书初版于1978年,本着 对质量较高,基础较好,使用面较广的教材,要进行锤炼 的精神编写而成。经过数十年的锤炼,依然长销不衰,是一本经受住实践考验的优秀教材。
本书首先介绍了集合论和拓扑学的基础知识,然后结合微积分的发展简史与不完善之处,从分析学的角度系统地介绍了实变函数的基本理论框架。全书所列内容均由作者多年讲义结合国际上近期新的《实分析》教材内容整理而成
复变函数与积分变换是高等院校理工类各专业的一门重要基础课程。本书是根据国家教育.部高等教育本科复变函数与积分变换课程的基本要求,结合目前高中实行新的课程标准后学生对本课程的要求,并结合作者多年教授本课
本书为普通高等教育“十二五”规划教材。全书共九章,主要内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换,数学软件在复变函数与积分
《普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
%26nbsp;%26nbsp;%26nbsp;%26nbsp;本书主要内容选择力图通俗易懂,包括复变函数、积分变换及Matlab应用简介3个部分共9章,其中靠前~2章介绍复变函数的基
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙
本书是数学系高年级本科生或工科研究生的泛函分析课程入门教材。本书主要内容有:度量空间、紧性、线性赋范空间、压缩映射原理、凸集与不动点、内积空间、线性算子和线性泛函的定义、Baire纲推理、开映像定理、