全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
本书包含集合的基本概念、欧氏空间Rn中的点集、Lebesgue测度、可测函数、Lebesgue积分、微分与不定积分和附录等7章。通过将实变函数中的问题与学过的微积分内容联系起来,让学生明白所有问题都有来源和出处,从而激发学习动力和兴趣;同时介绍与实变函数有关的学科领域,让学生了解实变函数的应用;书中配备了一些插图,尽可能将抽象的概念和定理转化为直观有形的事物,特别是对内容之间的联系尽可能从多个方面给予说明和解释。另外,本书配备了较多的习题,分成基本题和难题两部分。作为教学基本要求,只要求学生完成基本题的部分;难题部分供机动使用,鼓励有能力和有时间的一些学生去研究。 本书可以作为数学系本科生的教材,也可作为其他理工科研究生教材或参考书。
本书包含集合的基本概念、欧氏空间Rn中的点集、Lebesgue测度、可测函数、Lebesgue积分、微分与不定积分和附录等7章。通过将实变函数中的问题与学过的微积分内容联系起来,让学生明白所有问题都有来源和出处,从而激发学习动力和兴趣;同时介绍与实变函数有关的学科领域,让学生了解实变函数的应用;书中配备了一些插图,尽可能将抽象的概念和定理转化为直观有形的事物,特别是对内容之间的联系尽可能从多个方面给予说明和解释。另外,本书配备了较多的习题,分成基本题和难题两部分。作为教学基本要求,只要求学生完成基本题的部分;难题部分供机动使用,鼓励有能力和有时间的一些学生去研究。 本书可以作为数学系本科生的教材,也可作为其他理工科研究生教材或参考书。
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
本书内容包括复变函数和积分变换两部分。复变函数部分内容有:复数与复变函数,解析函数,复变函数的积分,复级数,留数及其应用。积分变换部分内容有:傅里叶变换和拉普拉斯变换。本书例题丰富,论证严谨,易教易学。每章后有主要内容简要概括。
《普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
《泛函分析学习指南》是《泛函分析讲义》配套的学习指导书。本书针对泛函分析中的难点、重点内容进行讲解,并针对典型习题归纳出解题方法,是本科生二年级的学习辅导书。
《复变函数简明教程》是为高等院校数学各专业“复变函数”课程编写的教材。它的先修课程是数学分析或高等数学。本书共分八章,内容包括:复平面,扩充复平面,解析函数,分式线性变换,cauchy定理,cauchy公式,幂级数,大模原理,Schwarz引理,Laurent级数,留数及其应用,调和函数,解析开拓,Riemann存在定理等。《复变函数简明教程》在选材上注重少而精,突出了复变量与实变量之间的关系、级数和积分表示方法,使之尽可能地满足数学各专业的需求,并充分地反映了复变函数的核心内容;在内容的处理上,体现了实分析与复分析的相同与不同之处,既注重定理的严格证明,又充分考虑了读者学习高等数学时的不同背景;在内容安排上,由浅入深、循序渐进、深入浅出,便于教学与自学;在叙述表达上,力求严谨精炼、清晰易读。为拓广所学知识,《复