本书第一部分主要介绍了广义函数论的基本内容,包括广义函数的定义、正则化、局部理论、乘子、卷积与张量积以及它的Fourier变换等经典内容;作为应用,考虑了常系数线性偏微分方程的基本解。第二部分主要介绍了经典函数空间的基本内容,包括Sobolev空间、H。lder空间、Lorentz空间在内的常见函数空间;Sobolev空间的延拓定理、嵌入定理与迹定理,以及Littlewood-Paley理论和Bony仿积分解。为了方便读者学习,我们在第三部分附录中补充了部分相关内容,并在各章节后配置了习题,使得本书基本上形成了一个自洽的体系。若作为授课教材,一个80学时的课程可以涵盖本书的主要内容,120学时则足以涵盖全部的内容。
《中外物理学精品书系·经典系列5:特殊函数概论》较系统地讲述一些主要的特殊函数,如Г函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等,同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等,在各章之末还附有习题,习题中包含了一些有用的公式作为《中外物理学精品书系·经典系列5:特殊函数概论》正文的补充. 《中外物理学精品书系·经典系列5:特殊函数概论》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用.
本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
德国数学家Robert Fricke(1861-1930年)以其对椭圆函数和模形式的研究而闻名。他与著名数学家Felix Klein合作,共同推动了该领域的发展。他最著名的著作之一就是三卷本《椭圆函数及其应用》,被广泛认为是椭圆函数领域的经典之作。他的著作不仅在当时引起了极大的关注,而且至今仍然是该领域的重要参考资料。本书是三卷本的第一卷,详细介绍了Weierstrass和Jacobi的椭圆函数经典理论,以及它们与黎曼曲面理论、模函数和Theta函数的联系,它旨在帮助读者理解椭圆函数的基本概念、性质和应用,为进一步研究和应用椭圆函数打下基础。
本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供所需要的泛函的数学基础知识。第2章量子化学基础,补充在一般物理化学以上的量子化学基础知识。第3章量子力学的密度泛函理论,从霍亨堡和库恩的两个定理出发,着重讨论库恩-沈方法,并介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,接着进入计算。最后是应用举例。第4章统计力学基础,补充在一般物理化学以上的统计力学的基础知识。第5章统计力学的密度泛函理论,首先建立两个生成函数,巨势泛函和内在自由能泛函,并引出巨势极小原理,形成基本框架。对于自恰场理论,由于也是研究非均匀流体的重要手段,因此也做简要讨论。第6章内在自由能泛函模型,详细讨论局部密度近似,包括普遍化梯度近似。针对宏观系统的特点,还进一步介绍更符合
当今科学家收集曲线样本及其他函数观测值,这本专著论述这类数据分析的思想和技巧,主要内容包括经典的线性回归方法、主成分分析、线性建模、典型相关分析及特殊的泛函技巧,如曲线注册和主微分分析。 本书始终利用来源于实际应用的数据,介绍方法的动机并举例论证,特别通过讨论数据生成过程的光滑性,说明如何通过泛函方法来发现数据的新特点;这些数据主要来源于增长分析、气象学、生物力学、马类科学、经济学及医学等领域的应用。本书论述新颖的统计技术,同时使其中的数学论证能被大多数人所理解。 本书许多内容都基于作者自己的工作,某些内容是首次出版。本书适合学生、应用数据分析学者及科研人员阅读,对统计学及其他广阔领域的研究也颇有价值。 本书作者Jim Ramsay是McGill大学的心理学教授,加拿大统计学会主席,多元分析等诸多
本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
本书第一部分主要介绍了广义函数论的基本内容,包括广义函数的定义、正则化、局部理论、乘子、卷积与张量积以及它的Fourier变换等经典内容;作为应用,考虑了常系数线性偏微分方程的基本解。第二部分主要介绍
本书根据作者多年在中山大学主讲实变函数论的讲稿整理而成,主要关于测度论和积分理论,内容有集合与基数、测度、可测函数、积分、L2空间等.每一章都附有较多例题,介绍实变函数解题的典型方法与重要技巧.书中的习题都有解答或者提示,方便学生学习.本书一个重要特点是结合测度论的发展历史,对相关的数学家及其工作也作了简短介绍.
本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that ests between several relatedareas of analysis.These areas are:the estence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the moncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.