平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
本书是复流形的一大经典(全英文版),也是陈省身先生著名的著作之一。该书是1995年版复流形理论第2版的修订版。本书以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。本书的*特点是复流形理论的微分几何方法是在S.-S.Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riemann几何的一本理想参考书。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
由刘仁杰编著的《画法几何》是作者总结多年教学和改革经验编写而成的,教材内容符合高等学校工科制图课程教学指导委员会制定的《画法几何及机械制图课程教学基本要求》。其内容包括:正投影原理、点、直线和平面的投影、曲线和曲面、基本立体及其表面交线的投影、轴测投影图、立体表面展开等。其中特别增添了空间几何元素相对观察者的投影分析和应用,对判别直线、平面的空间位置,判别直线与平面、平面与平面相交可见性提供了直观简洁的方法。 《画法几何》可作为高等院校机械类、非机械类各专业的教材,也可供其他各类学校师生和相关工程技术人员参考。 与《画法几何》配套出版的《画法几何习题集》(中国质检出版社,2011.8)可供读者选用。
本书是解析几何的学习辅导书,分向量与坐标、平面与直线、特殊曲面、二次曲面、二次曲线共五章.每章由知识概要、典型例题分析与讲解、习题详解三个部分组成,较好地阐释了解析几何的思想和方法,对每章的重点和难点做了梳理与总结,同时通过举例分析,尝试一题多解,提高读者的解题能力,帮助读者解疑释惑,进一步理解知识点.其中习题详解部分对《几何学引论》(第2版)中的解析几何课后习题进行了全解. 本书可作为高等学校解析几何课程的教学参考用书,也可以作为学生的学习辅导用书.
《新世纪高等学校教材·数学教育主干课程系列教材:直观拓扑(第3版)》第二版与版内容相同,第三版增加了以下内容:第1章第2节中,关于连续性的应用,增加了几个有趣的例子。 第2章中增加了一节:欧拉公式的一个实际应用,介绍有关平面布线的问题,即如何判断一个图是否可以画在平面上而使图中各线段除端点外不相交,这个问题在印刷线路的设计中有实际意义, 第3章中增加了一节:一笔画的一个实际应用,介绍有关邮递员的短路线问题。 第4章中,在介绍约当曲线定理的第1节后,增加了介绍约当曲线在其上不成立的曲面--环面,在介绍布劳威尔不动点定理的第2节中,增加了关于1维布劳威尔不动点定理的直观讨论;在这一节后,增加了介绍1维布劳威尔不动点定理的一个应用--关于求解市场均衡点问题。 第5章第1节中,增加了一些关于莫比
本习题集内容有:正投影中点,直线,平面,投影变换,点、线、面与投影变换测验作业;平面立体、曲线曲面、曲面立体,平面、直线与立体相交,两立体相交,轴测投影,平面立体、曲面立体、立体与立体相交测验作业;标高投影,阴影,透视,透视测验作业,并附有部分习题解答。 本习题集供普通高等院校中,土木工程和建筑类各专业的“画法几何及工程制图”以及“画法几何及阴影、透视”课程使用。其中,正投影和轴测投影部分也可供其他工程专业选用。该习题集是同济大学出版社同时出版的21世纪高等院校土木建筑类专业教材《画法几何》的配套书。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。
《平面解析几何方法与研究(第2卷)》一书全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的。《平面解析几何方法与研究(第2卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助。对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题。每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用。因此,《平面解析几何方法与研究(第2卷)》是一本有价值的数学教学参考书。
尤承业编著的《解析几何》是学习几何学的入门教材。书中既讲解了空间解析几何的基本内容和方法(向量代数,仿射坐标系,空间的直线和平面,常见曲面等),等讲解了仿射几何学中的基本内容和思想(仿射坐标变换,二次曲线的仿射理论,仿射变换和保距变换等),还介绍了射影几何学中的基本知识,较好地反映了几何学课程的全貌。全书共分五章,每章内都附有一定数量的习题,书末附有习题答案和提示,便于读者深入学习或自学。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何
本书是作者根据多年来为北京大学力学系研究生和高年级本科生讲授同名课程的讲稿编写而成的,书中系统介绍了微分几何的基础知识。全书共分为六章:章介绍了向量和张量的基本性质;第二章给出了欧氏空间中曲线与曲面的几何;第三章引入了流形的概念及若干性质,如向量的Lie导数的性质;第四章介绍了流形上的微分形式和外微分运算,并给出了几个重要定理的证明;第五章介绍了Lie群与Lie代数的性质,特别是在不变量理论中的应用;第六章介绍了动力系统与Symplectic几何的理论及其在力学中的应用。每章末配有适量的习题,便于读者选用。
и.м.维诺格拉多夫所著的《三角和方法》共分11章:第1章一般性的引理;第2章奇异级数的研究;第3章一个定积分的研究;第4章华林问题中G(n)的估值;第5章利用整多项式值的分数部分所作的近逼;第6章外尔和数的估值;第7章华林问题中的渐近公式;第8章整多项式值的分数部分的分布;第9章以素数为求和变数的简单三角和数的估值;第10章哥德巴赫问题;第11章函数ap所取的值底分数部分之分布。 《三角和方法》适合于高等院校师生、数论爱好者及数学史研究人员。
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
《平面解析几何方法与研究(第3卷)》全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的,《平面解析几何方法与研究(第3卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助,对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题,每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用,因此,《平面解析几何方法与研究(第3卷)》是一本有价值的数学教学参考书。
代数几何是数学中的一个重要分支,国内外很多著名的数学家都从事过对它的研究。本书从一道im0试题的解法谈起,详细介绍了代数几何中的贝祖定理。全书共分五章,分别为:一道背景深刻的im0试题、多项式的简单预备知识、代数几何中的贝祖定理的简单情形、射影空间中的交、代数几何、肖刚论代数几何。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
本书是作者从事高等几何教学20余年经验的结晶,主要内容包括射影平面、射影变换、变换群观点、二次曲线理论、几何学简史等。本书科学体系严谨,内容精炼,深入浅出、语言生动,图文并茂,易教易学。同时,本书还配备了作者授课时用的电子教案,以供广大教师、学生参考。 本书可作为高等院校数学专业本科生和专科生的教材,亦可供有关人员参考。