希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
《现代几何学 方法与应用》是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
本书根据作者近年来多次在南开大学讲授黎曼几何的讲稿写成,可以作为黎曼几何的入门教材,主要介绍黎曼几何的基本概念与基本方法。全书共十四讲,依次介绍黎曼流形、黎曼联络、测地线、曲率等基本概念;其间介绍弧长的变分公式以及Jacobi场等基本方法,并讨论黎曼流形上的几何变换、微分算子、完备性、比较定理等;最后,作为黎曼流形的重要实例,介绍了齐性黎曼流形。每一讲都配有适量的例子和重要的应用,以及少量习题,以加深对相关概念和方法的理解。本书强调几何背景,着重介绍几何直观比较明确的一些定理,定理的证明也以经典微分几何方法为主。
本书为 六宫变型数独 系列的*本,系统地介绍了六宫对角线的解法。在六宫对角线的解法中,*次以出版的形式,清晰定义了共同影响的解题思路。本书选择常见的题型,通过典型的例题,详细讲解每一步的思考方法,手把手教读者如何一步步分析解决各类题目。《BR》 本书150道练习题,按照由浅入深、由易至难的顺序编写。有些题目难度甚至比一般的比赛题目更难一些。无论这些题目难易程度如何,都是可以用逻辑推导出来的。
本书共分十三章,重点讲解投影的基本知识、点线面的投影、立体的投影、轴测投影、组合形体、标高投影、立体表面展开等内容。通过实例,图文结合、循序渐进地介绍了画法几何学的基本知识、读图思路。可作为土木工程、道桥工程、城市地下空间工程、安全、力学、测绘、环境工程、暖通、给排水、建筑学、园林、规划、环境设计、工程管理、造价、土地、房地产、城市、物业、机械、交通、物流、电气、自动化、智能、通信、信息等专业本科、专科学生的教学用书,也可供相关工程技术人员参考。 与本书配套使用的《画法几何学习题及解答》(周佳新主编)由化学工业出版社同时出版。 教材和习题及解答均有配套的PPT版课件。
本书是根据复旦大学的教材改编而成的。全书共分6章,主要介绍坐标系统、变换、机构运动的数学表示、曲线模型、曲面模型、共轭曲面等内容。 本书可供高等学校有关专业用作应用几何课程的教材,也可供从事应用数学工作以及计算机辅助设计和制造的科技工作者参考。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
本书是在作者总结多年教学经验和教改成果的基础上编写的,符合工程图学教学指导委员会制定的《工程制图课程教学基本要求》。书中内容体现了科学技术和教育发展对教学新的要求,将AutoCAD绘图软件应用、构型设计、徒手绘图与传统的投影理论、绘图技术揉合在一起,并采用了*国家标准,这是本书显著的特点。本书内容主要包括:投影基础;点、直线、平面的投影;直线与平面以及平面与平面的相对位置;投影变换;制图的基本知识与技能;计算机绘图的基本知识;立体;轴测投影图;组合体视图;机件常用的表达方法;常用零部件和结构要素的特殊表示法;零件图;装配图;AutoCAD三维实体造型;焊接图和展开图等共计十五章。作者还编写了与教材配套的《画法几何及机械制图习题集》,由国防工业出版社同时出版。 本书可供高等工科院校机械类和近机
拓扑代数是拓扑和代数相互交错的研究方向,用统一的思想处理纷繁多变的问题会因其内部动力与外在需求产生新的突破口。林福财所著的《拓扑代数与广义度量空间》以利用代数结构及我们熟悉的广义度量空间理论的方法,寻求仿拓扑群理论和rectifiable空间的广义度量性质及其紧化性质,使过去只重视集合论方法的广义度量理论在代数运算中取得应用,是作者关于拓扑代数的一部专著。内容包括仿拓扑群和rectifiable空间的基数不变量、仿拓扑群和rectifiable空间的广义度量性质和仿拓扑群和 rectifialble 空间的紧化余等。《拓扑代数与广义度量空间》论述严谨,只要具有拓扑代数和广义度量空间的基础知识就能阅读本书,并进入研究的前沿。读者对象为大专院校数学系师生、研究生和数学工作者。
本书是以科技图形为主,研究和揭示其中显含的、隐含的和深藏不露的机理和内涵。 目的是进一步发挥“由图到数”“由图到理”“由图到用”的智慧和才华。书中所引用的案例和算例大多数是从科研或工程项目中提取的,这有利于开拓思维、提升理论和增长才干。全书共分为7章,附图280幅。 本书可作为高校工科专业研究生、青年教师的科教辅助资料,也可以作为企业科技人员的参考范例。
本书共八章,主要包含圆锥曲线的由来、定义、方程、性质、切线和法线、作图、通论以及举例应用等内容,深入浅出,通俗易懂。 本书适用于中学生和数学教师参考使用,也可供数学爱好者作为科学普及读物阅读。
《空间解析几何(新版)》内容包括向量代数、空间的平面与直线、常见的曲面、二次曲面的一般理论、正交变换和仿射变换.《空间解析几何(新版)》结构紧凑,突出了解析几何的基本思想方法,强调形数结合,注意展现数学知识的发生过程和数学问题解决的思维过程,注重思维训练和空间想象能力的培养.《空间解析几何(新版)》表达清晰,论述深入浅出,力求使读者便于学习领悟.书末附有习题答案与提示,供读者学习参考.
黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省优秀论著一等奖;第二版于2000年由台湾九章出版社出版。