《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
本书的主要内容包括:误差与范数,非线性方程(组)的数值解法,解线性方程组的直接方法,解线性方程组的迭代法,矩阵特征值与特征向量问题的计算,函数的插值方法,曲线拟合与函数逼近,数值微分,数值积分,常微分方程(组)求解,用差分法求偏微分方程数值解。本书可作为各类高等学校数学本科专业及非数学专业高年级学生数值分析教材及上机指导用书,也适用于教师及工程技术人员参考。
《测度与概率(第2版)/普通高等教育“十一五”规划教材·数学与应用数学基础课系列教材》论述测度论和以测度为基础的概率论的基本知识和方法,包括集及其势、距离空间、测度与概率、可测函数与随机变量、积分与数学期望、乘积测度与独立、Radon-Nikodym定理与条件期望、概率极限理论等。《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的特点是读者不必学习实变函数论而学习测度论;测度论与概率论的基本内容紧密结合而更有利于理解二者的关系及其实质;在《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的基本目标下,尽可能使内容现代化;《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》文字通畅、条理清楚、论述严谨、便于学习;每节后都配有较多的
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
本书追溯了统计学如何误入歧途的历史(300多年),从十七世纪数学家雅各布?伯努利的开创性工作开始,一直到赌博、天文学和遗传学中对统计学的运用。作者讲述了互相竞争的统计学派之间的争斗,探讨了催生该学科的令人惊讶的人类问题(种族主义)以及使其脱轨的所有人类缺点。例如,十九世纪和二十世纪里有影响力的人发展出一种他们声称是纯粹客观的统计方法,以压制对其政治议程(包括优生学)的批评。作者对概率的数学和逻辑进行了清晰的阐述,深入浅出地将较为复杂的概念介绍给对统计方法感兴趣的读者,这些统计方法实质上构成了我们对世界的理解。他认为,我们需要采取贝叶斯方法——即在用不 信息进行推断时纳入先验知识,以解决危机。本书的内容横跨数学、哲学和文化,解释了为什么我们使用数据的方式出了问题,以及如何解决这个问
《简明数学词典》所收词条以大学本科数学课程为主,并略有扩展,其内容包括数论、多项式、线性代数、抽象代数、有限群表示、李群、李代数、解析几何、高等几何、微分几何、点集拓扑学、代数拓扑学、数学分析、实分析、复分析、泛函分析、常微分方程、偏微分方程、概率论、随机过程、数理统计、计算数学、组合数学、图论、模糊数学、运筹学、数学基础、集合论、数理逻辑、控制论、计算机科学、经济数学以及常用的数学常数、公式和数表等。共收词条约4800条。为便于查阅,书末附有按汉语拼音音序排列的中文词条索引,和按英文字母顺序排列的英文词条索引。《简明数学词典》可供大学本科生、专科生、大学教师及科技工作者使用。
《混沌与分形浅谈》就是一本通俗科学书,但又不是一般的通俗科学书。它所讲的问题不是只作泛泛的介绍,而是有一定的数学推导,推导过程详尽而浅显,使读者一读就能读懂,从而获得相应的知识。它既适合高中学生,也适合大学学生;既适合从事该方面研究的人作为人门读物,也适合不从事该方面工作的各类科学工作者作为拓宽知识的读物。
《常微分方程》介绍常微分方程的基础知识,包括基本理论、方法和在工程实际的若干应用。全书共分六章28节,包括绪论、初等积分法、线性方程、常系数线性方程、一般理论和定性理论初步等内容,涉及常微分方程模型、矩阵指数函数方法、微分不等式与比较定理、微分方程数值解、动力系统概念、周期轨道与Poincar6映射、平面Hamilton系统等方面知识。《常微分方程》力求贴近工程实际,贴近现代微分方程的发展主流,贴近新时代读者的阅读习惯,为读者以后深入学习、研究和应用微分方程提供一个方便的台阶。 《常微分方程》可以作为高等学校数学专业常微分方程课程的,也可供其他希望了解常微分方程理论的相关专业人员参考。
数学是基础性学科,在人类历史发展和社会生活中发挥了巨大的作用。《九章算术》汇总了中国先秦至汉代的所有数学成就,是古代中国的数学著述。本书通过通俗易懂的语言,以讲故事的方式,生动有趣地介绍了九章算术的相关内容,涉及算术、代数、几何等诸多领域,并与日常实际生活紧密相联,每个故事都充分体现了中国人的数学观和生活观。此外,本书根据内容的需要,配有许多精美的插图,能帮助小读者更好地理解书里的内容。
Fractional order calculus is the theory of arbitrary order differential and integral, it is unified with the integer order differential and integral calcu-lus, is the development of classical calculus, fractional calculus as a descrip-tioof classical physics and related discipline theory analytic mathematical tools have beewidely accepted, but whepeople study plex systems and plex phenomena, the classical integer order differential and integral equatiodescriptiofor the systems will encounter a series of problems,therefore, there is aurgent looking forward to having a kind of mathema-tical tools available and cabe based othe basic principle of the plex system modeling. Fractional-order differential equations are very suitable for describing materials and processes with memory and heritability, and their descriptioof plex systems has the advantages of simple model-ing, clear physical meaning of parameters and accurate description. Irecent decades, fractional differential equations have
本书详细介绍了柯西-许瓦兹不等式、柯西不等式的应用技巧、证明恒等式、解方程(组)或解不等式、证明不等式、证明条件不等式、求函数的极值、解几何问题、切比雪夫不等式及其应用等内容,而且在重要章节后面都有相应的习题解答或提示。
《高中数学教学的若干思考》主要总结了作者多年的数学教学经验,从对学生进行“转变”的教育、培养学生学习数学的兴趣和学习方法的思考、培养学生思维品质的思考、关于教师专业素养及教育科研的思考等内容,阐述了自己的看法。《高中数学教学的若干思考》适用于数学教学工作者及数学爱好者参阅。
《几何学教程(平面几何卷)》是法国著名数学家J.Hadamard的一部名著,译者为我国著名初等几何专家朱德祥教授和其子朱维宗教授。该书系统地阐述了初等平面几何各部分的主要内容,不仅具有逻辑的严谨性,而且有的阐释与论断;书中附有大量的习题(包括杂题、竞赛试题以及所有这些习题的详细解答),可供读者钻研和复习,附录部分主要介绍几何方法的基本原理以及欧几里得公理、切圆问题、面积概念、马尔法提问题等。该书迄今始终是初等几何方面的重要文献之一,它对掌握平面几何学甚至教学方法、培养独立思考能力都有启发作用。 《几何学教程(平面几何卷)》可供高等院校数学与应用数学专业学生、中学教师、数学爱好者、数学竞赛选手及教练员作为学习或教学的参考用书。
《数学奥林匹克中的欧几里得几何》较系统地介绍了当今数学奥林匹克竞赛中几何试题所涉及的一些热点知识,如有向角、等角共轭点与等距共轭点、根轴与根心、完全四边形、调和点列等,还给出了这些几何试题的各种构型及一些重要方法,如三角法、面积法、解析法、复数法、射影几何方法等,还搭配了精选的例题,以及超过300道选自各地数学竞赛的练习题。 《数学奥林匹克中的欧几里得几何》还对欧拉、帕斯卡以及其他数学家的经典结果进行了介绍。 《数学奥林匹克中的欧几里得几何》是一本富有挑战性的解题指导书,既适合准备参加全国或者国际数学竞赛的学生和想要讲授荣誉课程的教师阅读参考,又适合高等院校相关专业研究人员及数学爱好者参考使用。
《幻方、幻立方与拉丁方》共分三篇,主要介绍了幻方的构造,幻方的原理及其改进、扩充、推广;Franklin神奇幻方;拉丁方。同时对奇数阶幻方、双偶阶幻方、单偶阶幻方这三类幻方常用的解法予以总结。精选多道竞赛试题给予详细分析介绍,阐述其潜在的本质内涵,揭示其命题规律和解法思想,进一步挖掘出相关命题的系列问题以及解法的形成过程,为发现问题及其解法打开学习之门。
《椭圆曲线》共分八章。在每章中,如果需要用到一些比较深刻的或读者不太熟悉的概念,如同余、群、环、域、ζ函数、L 函数、模形式等,我们都会适时的在适当的地方予以介绍。在本书的正文前给出了一些常用的符号及其说明,书末则给出进一步阅读的有关(英文)参考文献。为了节省篇幅,在本书中我们一般不给出定理的详细证明。