《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
全书采用一种统一方式加以讨论,即首先对生成可用数据的抽样过程进行设定,并考察仅利用实证证据时,探讨了解认识总体参数的情况,然后研究倘若在施加各种各样的假设条件下,这些参数的集值识别域会如何缩小。所用的推断方法是传统的且完全非参数的方法。
本书是国内全面讨论概率论发展与先进数学技术的学术专著,较全面、翔实地概述了概率论的发展历史。从初的博弈分析问题到现今方法论综合性学科,全书勾勒出概率论兴起、发展和壮大的清晰脉络,并简要介绍了当前概率论学科的主要研究方向和发展动态。本书也试图从概率论教学角度诠释概率思想,以期让更多的读者从中受益。
本书追溯了统计学如何误入歧途的历史(300多年),从十七世纪数学家雅各布?伯努利的开创性工作开始,一直到赌博、天文学和遗传学中对统计学的运用。作者讲述了互相竞争的统计学派之间的争斗,探讨了催生该学科的令人惊讶的人类问题(种族主义)以及使其脱轨的所有人类缺点。例如,十九世纪和二十世纪里有影响力的人发展出一种他们声称是纯粹客观的统计方法,以压制对其政治议程(包括优生学)的批评。作者对概率的数学和逻辑进行了清晰的阐述,深入浅出地将较为复杂的概念介绍给对统计方法感兴趣的读者,这些统计方法实质上构成了我们对世界的理解。他认为,我们需要采取贝叶斯方法——即在用不 信息进行推断时纳入先验知识,以解决危机。本书的内容横跨数学、哲学和文化,解释了为什么我们使用数据的方式出了问题,以及如何解决这个问
本书介绍非参数统计的基本概念和方法, 其内容包括预备知识、U 统计量、基于二项分布的检验、列联分析、秩检验、检验的功效与渐近相对效率、概率密度估计、非参数回归. 每一章内容都着重阐述非参数统计推断的一般处理技术和原则, 并给出一些典型例子. 各章后面的习题侧重于应用. 本书的特点是侧重于介绍非参数统计在各应用领域中的常用方法,尽可能简化公式推导并淡化理论证明. 此外, 本书有选择地安排一些模拟计算和实际数据分析, 其主要程序放在附录A 中.
《数学思想概论(第4辑):数学中的归纳推理》将从数学的角度讨论推断所依赖的推理模式。虽然这种推理不能成为严格的数学证明,但这种推理依然具有逻辑性的,我们称这种推理模式为归纳推理。可以这样描述归纳推理的定义:从经验和概念出发,按照某些法则所进行的、前提与结论之间有或然联系的推理,比较演绎推理的定义可以看到,归纳推理与演绎推理的出发点是根本不同的.特别是,归纳推理比演绎推理要灵活得多,这是因为:在推理过程中,“概念”是必要的,但不需要抽象为严格的定义;“法则”是必要的,但不需要确立为严格的规定;前提与结果之间的“联系”是必要的,但这种联系可以是或然的.正因为归纳推理具有这种灵活性,才可能从事物(事情和实物)的现实出发,对事物的过去或者未来进行推断。
《射影微分几何学》从李群和李代数、射影曲线、射影曲面、射影共轭网、射影联络空间、射影球丛几何、对称黎曼空间七个方面介绍了射影微分几何学的初步知识。 《射影微分几何学》可供仪器仪表、电子、数控、机电、建筑设备、结构工程、计算机、金融和建筑物理等专业的科技人员使用。
本书内容始终都是时间序列领域的。第4版仍然分为5个部分,相对第3版新增内容主要有非线性和长记忆模型、多元时间序列分析以及前馈控制,其余各章节根据现实和教学需要均有不同程度的更新。在本书中,几位统计学大师用极其通俗的语言,结合大量的实例,阐明了时间序列分析的精髓。本书内容十分丰富,叙述简明,强调实际应用。相信每一位研读此书的读者都会获益匪浅。
《数学圈1》包括从懂数学的乌鸦到个女数学家、从阿育王的石柱到费马的笔记、从小人物到拿破仑、从集邮上的阿贝尔到课堂上的维纳等章节。
变分法是研究泛函极值问题的一门科学,是古典数学的一个分支。 《变分法及其应用:物理、力学、工程中的经典建模》共分六章。章介绍泛函分析的一些基本概念和符号;第二章、第三章提出四个古典的变分模型,讨论泛函取得极值的必要条件、各种形式的欧拉方程、条件变分、一阶变分的一般形式、自然边界条件、变动边界与横截条件;第四章介绍物理学、力学中的变分原理,二次泛函极小与特征值的关系,正定算子的极小泛函;第五章介绍变分学中的直接方法;第六章介绍极值的充分条件。 《变分法及其应用:物理、力学、工程中的经典建模》可作为应用数学、应用物理及应用力学等专业本科生、研究生的教材,也可作为科技工作者的参考书。
《微积分的思想和方法》是一本介绍微积分最基本内容的。它以微积分的基本思想和方法为主线,讨论了微积分创立的主要起源、数学准备、基本工具和基本方法。 本书的主要内容包括前言、绪
本书是作者在Rice大学和Houston大学给研究生授课的讲义基础上写成的。本书在介绍了泛函分析的基本概念(如Banach空间)后,用Hibert空间泛函的F.Riesz表示定理建立Radon-Nikodym定理,从而引进条件期望的概念;在Hilbert空间的正交分解概念的基础上,引进了Brown运动,并建立了积分的概念;证明了Hahn-Banach定理并引进了对偶空间的概念后,便可讨论概率分布的弱收敛及弱拓扑的紧性;在介绍了交换Banach代数的Gelfand表示后,讨论了抽象Fourier变换的反演公式。本书最后两章讨论了算子半群和Levy过程。证明了算子半群的Hille-Yosida定理,讨论了Markov过程与算子半群生成子的关系。本书可作为高等学校本科高年级和研究生课程教材,对于专攻概率论与泛函分析的读者具有很好的参考价值,也可作为学习概率论和过程专著的导引。
本书作者是当代著名的前苏联代数几何学家,是一位有独创性,知识极为渊博的数学家。本书问世(俄文版1972年初版,英文版1977年初版)40多年来,一直被视为一部重要的代数几何经典名著.与同类书相比,本书内容全面,详尽,注重给出抽象理论的几何背景和起源,并配有充分反映几何本质的实例和图解。本书所需预备知识仅限于代数基础,是高年级本科生和研究生学习代数几何的首先选择的.
作为有限单元法的基础读物,本书系统地阐述了有限单元法的基本理论,介绍了各种弹性力学问题的有限元分析方法。为了兼顾缺乏弹性力学的知识的读者,在第二章对有限单元法中涉及的弹性力学的基本知识作了简要介绍。为了增强本书的实用性,用三章的篇幅介绍有阴元分析中的一些特殊问题、结构分析的程序设计与大型工程有限元通用软件等相关知识。 本书可作为土木、水利、机械等工科专业本科生的教材,也可作为上述专业工程技术人员与教师的参考书。
本书是一部简短的微分几何教程。详细讲述了微分几何,并运用它们研究曲面微分几何的局部和全局知识。引入微分几何的方式简洁易懂,使得这本书非常适合数学爱好者。微分流形的介绍简明,具体,以致最主要定理Stokes定理很自然得呈现出来。大量的应用实例,如用E. Cartan的活动标架方法来研究R3中浸入曲面的局部微分几何以及曲面的内蕴几何。最后一章集中所有来讲述紧曲面Gauss-Bon定理的Chern证明。每章末都附有练习。目次:Rn中的微分几何;线性代数;微分流形;流形上的积分;曲面的微分几何;Gauss-Bon定理和Morse定理。
《线性代数解题方法与技巧》收集了线性代数课程的大量经典习题。
本书为《数学建模案例丛书》的第三册,案例选自美国AP出版的UMAP期刊上的ILAP教学单元,包含的案例有怎样研制跨学科生动应用研究课题、海水淡化、遗传学与马尔可夫链、得克萨斯州南部地区交通需求预测及分析、高速公路匝道调节、汽车尾气排放、信号时控数据采集、进入地球轨道——发射宇宙飞船、航天飞机问题、水火箭飞行过程分析、学费预付计划、不能把鸡蛋放在一个篮子里——养老基金如何分散投资、人寿保险费的管理、污染物检测、确定恐怖鸟的体重。应用领域涉及工程、经济、生物、生态、社会等,数学知识基本上不超出微积分、微分方程、线性代数、概率、统计等大学基础数学的内容。案例展开过程中配备了要求学生解答的问题,作为研究内容的组成部分,让学生边阅读边练习。 本书的案例可以作为数学建模课程的辅助教材和自学材料,也为