本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
《运筹学(第四版)》在第三版的基础上修订完善而成,主要内容有线性规划、整数线性规划、非线性规划、动态规划、图与网络分析、网络计划技术、排队论、决策分析、对策论等。第四版继续保持了前三版的厚理论、宽口径、理论联系实际的特点和精炼、严谨的风格,第三版的绪论精炼为运筹学简介,作为引言,并结合当前的研究热点——复杂网络及大数据分析,在“图与网络分析”中增加了“复杂网络简介”,在“对策论”中增加了“网络对策”。此外对部分章节的内容和习题根据需要进行了增删或修改。习题分为(A),(B)两部分,难度有所差异,可供读者选择。教材配套的数字课程包含各章相关的应用实例和程序。《运筹学(第四版)》可作为数学与应用数学、信息与计算科学、金融数学等专业的运筹学课程教材,也可作为管理、系统工程等专业的专
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书是经济管理类各专业适用的运筹学辅导教材。本书包括两个部分:部分是运筹学各章节习题类型归纳与解析;第二部分是运筹学习题库,这部分的题全部都给出了正确的答案,有的还给出了解题的全过程,为学习运筹学的同学们提供了极大的选择空间。本书题材和习题取自全国高校广泛使用的清华大学出版社出版的《运筹学》和人民大学出版社出版的《运筹学通论》。 本书两个部分内容安排合理,便于学习运筹学的各个层次的同学们自学,亦可作为运筹学教学参考书。
今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
《运筹学》是高等院校理工科、管理学科和经济学科等学科各专业学生的必修课和专业基础课,也是这些专业硕士研究生入学考试的一门考试科目,也是参加全国大学生数学建模竞赛的选手的必修课程。它在自然科学、社会科学、金融、经济学等各方面都有着广泛的应用。为了帮助广大大学生扎实地掌握运筹学的精髓和解题技巧,提高解答各种题型的能力,我们根据清华大学编写的《运筹学》(修订版)编写了本书。 全书由以下几个部分组成: 1.概念、定理及公式:列出了各章的基本概念,重要定理和重要公式,突出了必须掌握或考试中出现频率较高的核心内容。 2.重点难点祥解:教材中课后习题丰富、层次多,许多基础性知识可以从各个角度帮助学习者理解基本概念和基本理论,因此,我们对课后习题全部给出了详细的解答。 3.典型例题精解: