本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书是经济管理类各专业适用的运筹学辅导教材。本书包括两个部分:部分是运筹学各章节习题类型归纳与解析;第二部分是运筹学习题库,这部分的题全部都给出了正确的答案,有的还给出了解题的全过程,为学习运筹学的同学们提供了极大的选择空间。本书题材和习题取自全国高校广泛使用的清华大学出版社出版的《运筹学》和人民大学出版社出版的《运筹学通论》。 本书两个部分内容安排合理,便于学习运筹学的各个层次的同学们自学,亦可作为运筹学教学参考书。
本书为应用型本科院校《数学建模》普及性教育教材。内容包括数学建模概论、日常生活中的数学模型、微分方程模型、*化模型、初等概率模型、图论初步及其应用、层次分析法及其应用等七章。各章配有适量的练习题,书末附有练习题参考解答或提示。本书特点;难易度比较适中,符合应用型本科院校大学生的数学基础;问题提法比较新颖,符合时代气息;问题研究具有实际意义或理论价值;问题分析透彻,通俗易懂,趣味性强,便于自学。 本书可作为应用型本科院校理工科及经济类各专业《数学建模》课程的教材,也可供参加全国大学生数学建模竞赛的学生、数学爱好者及科技工作者参考。
《运筹学》是高等院校理工科、管理学科和经济学科等学科各专业学生的必修课和专业基础课,也是这些专业硕士研究生入学考试的一门考试科目,也是参加全国大学生数学建模竞赛的选手的必修课程。它在自然科学、社会科学、金融、经济学等各方面都有着广泛的应用。为了帮助广大大学生扎实地掌握运筹学的精髓和解题技巧,提高解答各种题型的能力,我们根据清华大学编写的《运筹学》(修订版)编写了本书。 全书由以下几个部分组成: 1.概念、定理及公式:列出了各章的基本概念,重要定理和重要公式,突出了必须掌握或考试中出现频率较高的核心内容。 2.重点难点祥解:教材中课后习题丰富、层次多,许多基础性知识可以从各个角度帮助学习者理解基本概念和基本理论,因此,我们对课后习题全部给出了详细的解答。 3.典型例题精解:
随着航空航天、电子、军事、经济管理、生物工程等方面的飞速发展,*控制理论将在所有与控制理论相关的领域里获得广泛的应用。由此可见,理工科大学生需要学习这门课程,科技工作者需要掌握这门理论。但是,国内专门为本科生撰写的有关*控制理论的教材寥寥无几,仅有的几本又都是十多年甚至二十年前的教材,很难适应当前的需要。本书应运而生,不仅为大专院校提供了一本教材,还为科学技术人员提供了一本自学读物。 本书是作者在以往为本科生开设的*控制课程教学,中所写的讲义的基础上,参考国内外有关方面的教材或资料编写的,主要介绍*控制理论的三种方法:变分法、*值原理与动态规划方法,因此,它可作为学习*控制理论及其应用的一本入门书。同时,为了满足高层次人才的需要,本书还介绍了目前*控制理论的*结果:存在*控制的
本书精选反映当代科技进步和社会发展的21个问题作为案例,以“问题驱动”的形式详细讲解建立数学模型的思路、方法和步骤,并给出问题的解决方案。在所选的案例中,有的是“中国大学生数学建模竞赛”、“美国大学生数学建模竞赛”的赛题,也有的是根据赛题改编的,还有一些其他问题,涉及的数学方法主要有微分、积分、代数、统计、概率、*化、微分方程、分形几何、拟合、插值、灰色理论、图论及现代优化算法等。另外,还有一些物理方法。为便于读者学习和训练,本书针对不同案例数学建模所需的数学理论和方法,有侧重地分别介绍相关的数学知识。除个别计算比较简单的案例外,都在案例解答中给出了计算程序。《数学建模案例》案例特色鲜明、涉及范围广阔,内容讲解紧凑、明了,对读者掌握分析实际问题建立数学模型大有帮助,可作为
《运筹学导论(0版)》作为运筹学领域的佳作,是美国多所高校的运筹学教材用书,销售量一直名列前茅。原著作者长期从事运筹学的教学和科研工作,是业界的佼佼者。原著具有内容翔实、专业性强、应用价值高等特点,对靠前同类著作产生了重大影响。翻译出版该著作,对于丰富和发展我国军事管理学和运筹学理论和方法体系,完善军事管理学的定量研究手段,具有较大的理论价值和实践意义。译著可作为运筹学、管理学、系统工程等专业的教材,也可作为从事军事管理、经济管理等领域的研究人员的参考用书。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国很好畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分方程数值解法和矩阵特征值及特征向量的计算。书末附一份模拟试卷及其参考答案。 《计算方法与实习学习指导与习题解析(第2版)》可作为理工科大学生学习计算方法课程的参考书。