今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
《无知的博弈:有限信息下的生存智慧》全书用通俗易懂的语言,结合来自经济、政治、历史和日常生活中的大量例子,生动地展示了在不完全信息局势下个人如何做出的决策。包括如何在不确定环境中决策(与上帝博弈),如何在博弈中操纵信息(信号传递、信号干扰、信息隐藏),如何设计机制去探测对手的类型(信息甄别)。《无知的博弈:有限信息下的生存智慧》充分展现了有限信息下的博弈策略和智慧较量,并让我们更为深刻地洞察到社会生活某些表象背后的真相。
《建模的数学方法与数学模型》内容共分九章:章是数学模型概论,第二章是初等方法建模,第三章是微分法建模,第四章是差分方法建模,第五章是微分方程定性理论分析建模,第六章是线性规划方法建模,第七章是动态规划方法建模,第八章是层次分析法建模,第九章为图论方法建模。附录中给出了《建模的数学方法与数学模型》大部分图形的MAlLAB程序代码,以便更好地对图形验证分析。 《建模的数学方法与数学模型》可作为高等院校本专科生数学建模课程教材、数学建模竞赛培训课程的教材,也可供高校师生和相关科技工作者参考。
运筹学的根本目的是寻找解决形形色色的实际问题的一个“解”。运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质;运筹学的学习和入门不需要艰深的数学知识做基础,仅需微积分、线性代数和概率论的一些基本知识。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》共分13章,內容包括线性规划、对偶理论、整数规划、运输问题、多目标规划、目标规划、动态规划、非线性规划、图论、决策论、对策论、存贮论、排队论、统筹方法等。各章都附有练习题,并提供了较详细的参考答案。附录介绍了当今流行的计算化问题的LINGO软件。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》可作为财经类专业本科生、研究生的必修或选修运筹学课程的教材,也可作为相关领域读者学习运筹学的参考书。
本书系统介绍**化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用,基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系统的稳定性.应用部分包括凸优化问题的稳定性分析、一般优化问题的稳定性分析及三类锥规刘(非线性规划、二阶锥约束优化及半定优化)问题的稳定性分析,其中三类锥规划问题的稳定性分析分别涉及**性条件、Jacobian**性条件、强二阶充分性条件、稳定性的等价刻画及孤立平稳性等内容.
本书介绍了凸优化中的主要复杂性定理及其相应的算法。从黑箱优化的基本理论出发,内容材料是朝着结构优化和随机优化的新进展。我们对黑箱优化的介绍,深受Nesterov的开创性著作和Nemirovski讲稿的影响,包括对切割平面方法的分析,以及(加速)梯度下降方案。我们还特别关注非欧几里德的情况(相关算法包括Frank Wolfe、镜像下降和对偶平均法),并讨论它们在机器中的相关性学习。我们慢慢的介绍了FISTA(优化一个光滑项和一个简单的非光滑项的和)、鞍点镜像代理(Nemirovski平滑替代Nesterov的光滑)和一个对内点方法的简明描述。在随机优化中,我们讨论了随机梯度下降、小批量、随机坐标下降和次线性算法。我们还简单地讨论了组合问题的凸松弛和随机性对取整(四舍五入)解的使用,以及基于随机游动的方法。
本书共11章,内容包括运筹学思想与运筹学建模、基本概念和基本理论、线性规划、*优化搜索算法的结构与一维搜索、无约束*优化方法、约束*优化方法、目标规划、整数规划、网络计划、层次分析法及智能优化计算简介。这些内容是管理类、经济类专业研究生应具备的知识。作为教材,本书着重阐述基本思想、理论和方法,力求做到深入浅出,通俗易懂。每一章章末配有适当的习题,便于读者理解、消化书中的内容。本书可作为管理类、经济类及大多数工科类专业硕士研究生的教材,也可作为应用数学、计算数学及管理科学与工程专业本科高年级学生的教材或参考书,对于从事运筹及优化应用的技术人员和管理人员也有一定的参考价值。