如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答。 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助。 本书适合中学生及数学爱好者参阅。
数学建模算法与应用及习题解答套装 作 者: 司守奎,孙兆亮 主编 著作 等 定 价: 81 出 版 社: 国防工业出版社 出版日期: 2015年04月01日 页 数: 476 装 帧: 平装 ISBN: 9787118100372 ● 内容为空待完善 内容简介 《数学建模算法与应用习题解答(第2版)/数学建模系列丛书》 本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划模型,层次分析模型,随机模型,动态规划模型,图论模型,*短路模型,网络流模型,数学建模竞赛案例选讲,MATLAB软件使用简介,LINDO软件和LINGO软件使用简介等
《离散数学及其应用》全面系统地介绍了离散数学的基本理论与应用技术,内容主要包括集合与关系理论、组合计算方法与应用、整数与算法设计知识、数理逻辑演算与推理、图模型的基本理论与算法、抽象代数的基础知识等。《离散数学及其应用》注重知识的应用性、表达的可读性和体系的完备性,将分布在不同数学分支的离散数学知识点进行凝练和优化,形成一套相对完备的离散数学知识体系,并且在每个章节穿插丰富的应用实例,使得读者在学习离散数学理论知识的同时,还能比较系统地掌握离散数学的应用知识。《离散数学及其应用》用通俗易懂的语言深入浅出地表达知识内容,着重突出数学概念和定理的思想、本质,而不仅仅是形式化描述,使得广大读者能够通过自己的努力就可以不太困难地掌握离散数学的内容。另外,每章均配有数量的习题,供读者
《高等数学》作为高等职业教育各类专业必修的重要基础课和工具课,对培养学生的理性思维、科学精神以及分析问题解决问题的能力等都起着非常重要的作用。本书打破传统《高等数学》的知识体系框架,以模块化编排内容,突出“以应用为目的,以必需够用为度”的基本原则,面向专业需要,选取初、高等数学及物理等内容,同时兼顾升学需要,结合专业知识或背景,引入科学计算,恰当融入思政元素,加强对学生应用意识和能力的培养,满足学生专业课学习的需要。本书所附习题均配有详细的解答过程,供读者参考,这便于读者在做题时能及时发现错误并予以纠正,快速提高解题能力。
本书面向地理学问题,讲述了常用数学方法的基本原理和应用实例。全书分为四篇,共21章。第一篇是地理数学方法导论,讲述基本概念和知识,属于基础内容;第二篇讲述回归分析与相关分析,包括线性回归、非线性回归、Logistic回归、虚拟变量回归以及基于回归分析的模型选择等方法;第三篇讲述多元统计分析,包括主成分分析、因子分析和聚类分析等方法;第四篇讲述时空过程分析,包括时(空)问序列分析、Markov链、R/S分析等方法。本书作为北京大学研究生地理数学方法教材试用多年,其特点是简明、详细,便于自学者使用。在讲解原理的过程中穿插了大量实例,读者司以通过实例解析了解有关方法的应用要领和分析思路。 本书可以供地理学、生态学、环境科学、地质学、经济学、城市规划学等诸多领域的学生、研究人员以及工程技术人员学习或参考。
本教材主要是针对财经类院校统计学专业的本科生而写的,也可作为其他各专业本科生和研究生的多元统计分析教材或教学参考书。 全书共分10章。 章介绍了多元分析中常用的矩阵代数知识,这是全书的数学基础。第二章至第四章介绍的基本上是一元统计推广到多元统计的内容,主要阐述了多元分布的基本概念和多元正态分布及其统计推断。第五章至第十章是多元统计 的内容,这部分内容具有很强的实用性,特别是介绍了各种降维技术。涉及的降维方法包括:费希尔判别、主成分分析、因子分析、对应分析和典型相关分析等。
本教材主要是针对财经类院校统计学专业的本科生而写的,也可作为其他各专业本科生和研究生的多元统计分析教材或教学参考书。 全书共分10章。 章介绍了多元分析中常用的矩阵代数知识,这是全书的数学基础。第二章至第四章介绍的基本上是一元统计推广到多元统计的内容,主要阐述了多元分布的基本概念和多元正态分布及其统计推断。第五章至第十章是多元统计 的内容,这部分内容具有很强的实用性,特别是介绍了各种降维技术。涉及的降维方法包括:费希尔判别、主成分分析、因子分析、对应分析和典型相关分析等。