本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
《经典科学系列:超乎想象的能量》书中探讨了什么是能量,我们为什么需要它以及能量的转换。讲解水也携带着能量,介绍了令你难以捉摸的海洋能量,并进一步介绍了那些从天而降的奇怪能量。《经典科学系列:超乎想象的能量》标题新颖,耐人寻味。书中还配有风趣幽默的插图,使其更富有感染力,吸引力。同时,直白的语言给读者一种亲切的感觉。
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
本书系统阐述了数值分析的基本概念和理论,内容包括:数值计算的误差,解线性方程组的直接法和迭代法,线性方程组的二乘解,矩阵特征值问题,插值法,函数逼近,曲线拟合,数值积分,解非线性方程和方程组的数值方法。 本书适合高等院校信息与计算、数学、应用数学、计算机应用等专业的本科生作为教材,也可供工程技术人员参考。
谢冬秀、左军编著的《数值计算方法与实验(十二五普通高等教育规划教材)》比较全面地介绍了科学与工程计算中常用的数值计算方法,具体介绍了这些计算方法的数学原理与算法及其实现,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。全书共8章,内容包括误差分析、非线性方程求根、线性方程组的直接求解和迭代求解、函数的数值逼近 (代数插值与函数的逼近)、数值积分与数值微分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。 本书概念清晰,语言通俗易懂,理论分析严谨,结构编排由浅入深.各章附有一定数量的习题,供读者练习使用,书后附有习题答案与提示。 本书可作为高等院校信息与计算科学专业、数学与应用数学专业、计算机专业、通信工程专业等理工科本科及研
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
《 丛书(第四辑):轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法.在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。 《 丛书(第四辑):轨迹》可供中学数学教师参考,也可供中学生课外阅读。
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。 本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的教材或参考书。
本书是在贯彻落实*《高等教育面向21世纪教学内容和课程体系改革计划》的要求精神及第1版的基础上,按照工科及经济管理类“本科数学基础课程教学基本要求”并结合当前大多数本专科院校的学生基础、教学特点和教材改革精神进行编写的,全书以通俗易懂的语言,全面而系统地讲解数学实验的内容,全书共分7章,第1章是绪论;第2-5章是基础实验部分,内容包括一元微积分实验、多元微积分实验、线性代数实验和概率论与数理统计实验;第6章是综合实验;第7章是数学建模初步,每章都以实验的形式将有关内容与MATLAB相结合,达到理论与实践的统一,便于读者学习和上机实验,每节后面有“练习题”,每小节(或节)的例题(或实验)前有简要的“实验目的”,并在附录中有MATLAB的基本操作。 本教材理论系统,举例丰富、新颖,讲解透彻,难度适宜,
《 数学中的小问题大定理 丛书(第四辑):轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法.在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。 《 数学中的小问题大定理 丛书(第四辑):轨迹》可供中学数学教师参考,也可供中学生课外阅读。