本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
配合课堂教学,提供给学生折纸活动的一本学习材料用书,促进学生在折纸活动中提升动手能力,发展思维能力。该书适合幼儿园到初中的学生,不同阶段的学生都能在折纸中找到乐趣。
本书旨在介绍寿险精算数学的基本理论。通过阅读本书,读者可以了解建立寿险经验生命表的基本方法和步骤,学会计算连续型和离散型寿险保单的趸缴纯保费及生存年金的精算现值;并在此基础上计算均衡纯保费。本书导出了各种情况下准备金的计算方法、总保费的计算、总保费准备金的计算和准备金的几种修正方法。 本书是对2001年版寿险精算数学的修订。该书旨在介绍寿险精算数学的基本理论。本书导出了各种情况下准备金的计算方法、总保费的计算、总保费准备金的计算和准备金的几种修正方法。讨论了在独立性假设下个体的联合生存状态和最后生存状态的相关精算变量及关系,还进一步探讨了在非独立情形下的分布规律,并引入了两个寿险生命参数模型,Frank's Copula模型和Common Shock模型。介绍了多元风险模型与伴随单风险模型,推导了多元风险模
本书着重介绍了与现代计算有关的数值分析的基本方法,强调基本概念、理论和应用,特别是数值方法在计算机上的实现。以期学生在使用本后能够在计算机上进行有关的科学与工程计算。本书理论叙述严谨、精炼,概念交待明确,描述清晰,系统性较强,可供各校《数值分析》课程采用。 全书包括:插值和逼近,数值积分和微分,解线性代数方程的直接和迭代方法,解非线性方程和方程组的数值方法,特征值问题和常微分方程初值问题的计算方法。
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为本科计算数学专业,也可作为其他理工学科硕士、博士研究生的或参考书。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
《iCourse教材:数值计算方法》是与“爱课程”网上刘春凤教授主讲的国家精品资源共享课“数值计算方法”配套使用的教材,基本内容是依据数值计算方法课程教学基本要求确定的,力求满足“重概念、重方法、重应用、重能力”的培养目标。 《iCourse教材:数值计算方法》主要介绍的是数值计算方法中基础性和应用较广的方法,包括数值计算的基本问题、函数插值与逼近、数值微分与数值积分、线性代数方程组的直接解法和迭代解法、非线性方程的数值解法、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。每章都绘制了思维导图,配备了章导语和习题,并有机地引入Matllematica的相关内容,配置了适量的应用范例。 《iCourse教材:数值计算方法》力求内容简明、计算快捷、结果直观,以提高读者科学计算的能力。 《iCourse教材:数值
本书是与作者所编写的《数值计算方法》(科学出版社出版,ISBN7- 03-015964-0)配套的学习参考书,全书共分七章,内容包括数值方法研究的内容及误差分析、非线性方程的数值解法、线性方程组的直接方法和迭代方法、函数逼近的插值与曲线拟合法、数值积分与数值微分、常微分方程初值问题及边值问题的数值解、矩阵特征值与特征向量的数值解等。每章分三节,节讲述基本概念和主要结论,第二节给出典型例题的详细解答;第三节给出主教材中A类习题的题解和答案。附录给出了上机题的C 语言源程序和程序运行的结果,此部分内容基本上囊括了主教材的所有算法。 本书可作为高等院校计算机应用专业等非数学专业工科本科生及工科研究生学习主教材时不可缺少的配套学习参考书,也可供从事科学与工程计算的科技工作者参考。
《科学计算引论》是为大学高年级本科生和硕士研究生开设数值计算方法或数值分析课程而专门编写的一本教科书。全书共分9章,内容涉及数值分析基础、函数逼近、数值微积分、线性方程组数值解法、非线性方程数值解法、化方法、常微分方程初值问题数值解法、常微分方程边值问题数值解法及偏微分方程数值解法。本书以介绍通用数值算法为基础,同时也引入了当代高性能计算的知识内容。书中既注重算法理论的严谨性,又突出了算法的实际计算,并配备了所有常用算法的matlab程序,从而使算法理论与算法实现形成一体化。此外,本书还配备了量的习题,其中有些是理论分析题,有些是上机实验题。学生通过认真学习本教材、完成其习题可以系统地掌握科学计算知识,并应用于相关专业领域。 《科学计算引论》取材适当,用语深入浅出,通俗易懂,除适合于
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
数独自诞生以来,迅速风靡世界,是因为它既能跨越文化传播,又健智益脑,趣味无穷。本套书针对目前数独的现状,开发了连体数独、立体数独、线型数独及混合运算数独四个方面的书共6本。连体数独需要读者对二个变形数独具有良好的协同能力。立体数独突破了平面数独的范畴,要求读者具备良好的空间慨念和三维思维能力。线型数独是通过变化多端的线段组成的图型对数字在排列中进行特定的约束,使数独有更高的关联性和更强的逻辑性。线型数独内容丰富,要求读者具有很强的适应能力与归纳能力。混合运算数独,因它在运算中的不确定性,要求读者具有灵活的思维能力和精确持久的运算能力。本套书为读者提供了一个全新的数独平台,通过做题,读者在空间概念,逻辑思维,运算能力及处理复杂的数独问题方面能全方位得到快速提高。
模拟进化算法求解多目标优化问题是智能计算的一个热门和重要领域,它突破古典运筹学中多目标优化方法的局限性,并具有区别于传统单目标进化算法的特征,在工业工程、科学和国防军事上具有很高的应用价值。本书较系统全面地介绍和讨论多目标进化算法理论与应用方面的基本知识和问题。主要内容包括多目标优化和模拟进化算法的基本概念;主要的多目标进化算法;多目标进化算法的理论问题;设计解决多目标优化的新型进化算法的性能法的理论问题;设计解决多目标优化的新型进化算法的性能评价和测试问题;典型的应用实例。另外,还着重介绍进化算法领域中最近兴起的粒子群算法处理多目标问题的理论方法与应用示例。 本书在参考外有关书籍的基础上,借助合作者的科研成果,细致而全面地展示多目标进化算法的研究进展,具有新颖性、学术性和