《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书最具价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
本书全面、系统地介绍了计算复杂性理论的基本内容与各种NPC问题、NP难问题等复杂问题的计算机求解方法。前四章分别简要介绍了线性规划、多面体理论、网络规划与动态规划等预备知识。第五至九章具体介绍了计算复杂性理论。包括复杂性的定义与分类,证明一个问题为P类或NPC类的基本方法,NPC记理论在分析、求解问题中的应用与近似算法的性能度量等。第十至十六章则主要以整数规划为框架,详细论述求解NPC及NP难问题各种不同形式的精确算法与近似算法。 本书可作为信息与计算科学、应用数学、计算机、管理科学等专业的研究生教材或本科生的选修课教材,也可供有关的科研人员参考。
本书系统地论述了矩阵扰动分析的理论、方法和新的进展,内容包括:矩阵空间的范数与度量,线性方程组和最小二乘问题的扰动理论,代数特征值问题的扰动理论等。本书不仅是总结作者多年研究工作的专著,而且是一本很好的教材,书中各节都附有难易程度不同的习题。
本书主要介绍计算机常用的数值计算方法及有关的基础理论知识。全书共分七章,至六章介绍了引论、插值方法等计算方法的基础知识和基本理论,每章都有一定数量的习题,同时还附有答案。第七章为计算实习内容,用于指导学生自学以及上机实验。该章有六个实习,配有一定数量的编程例题和上机的实习题目。 本书内容安排深入浅出,通俗易懂,易于教学,便于自学,为适应不同要求的需要’安排了一定数量的选学内容。对目录中加有“关”号的章节可酌情舍取。 本书可作普通高校、夜大和专科计算机专业学生的教材,也可供工程技术人员自学参考。
《轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法。在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。《轨迹》可供中学数学教师参考,也可供中学生课外阅读。
《 数学中的小问题大定理 丛书(第四辑):轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法.在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。 《 数学中的小问题大定理 丛书(第四辑):轨迹》可供中学数学教师参考,也可供中学生课外阅读。
《数值线性代数(第2版)》由徐树方、高立和张平文编著,是为高等院校数学系计算数学专业本科生编写的数值代数课程的教材。全书共分八章,内容包括:绪论,求解线性方程组的Gauss消去法、平方根法、古典迭代法和共轭梯度法,线性方程组的敏度分析和消去法的舍人误差分析,求解线性小二乘问题的正交分解法,求解矩阵特征值问题的乘幂法、反幂法、Jacobi方法、二分法、分而治之法和QR方法。本书在选材上既注重基础性和实用性,又注重反映该学科的*进展;在内容的处理上,在介绍方法的同时,尽可能地阐明方法的设计思想和理论依据,并对有关的结论尽可能地给出严格而又简洁的数学证明;在叙述表达上,力求清晰易读,便于教学与自学。每章后配置了较丰富的练习题和上机习题,其目的是为学生提供足够的练习和实践的素材,以便学生复习、巩固和
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及逻辑和证明,集合、函数、序列、求和与矩阵,计数,关系,图,树,布尔代数。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
有限元方法是现代科学与工程计算领域中重要的数值方法之一,间断有限元方法则是传统(连续)有限元方法的创新形式、改进和发展。本书系统地阐述了间断有限元的基本理论、思想和方法。 本书主要针对椭圆方程、一阶双曲方程、一阶正对称双曲方程组、对流扩散方程、Stokes方程和椭圆变分不等式等偏微分方程定解问题,介绍各种形式间断有限元方法的构造、稳定性和误差分析、超收敛性质、后处理技术、后验误差估计和自适应计算。 本书可供高等院校计算数学、应用数学、计算物理和计算力学等专业的研究生、教师以及从事科学与工程计算工作的科技人员阅读和参考。
无