本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书是关于积分方程的高精度算法的*本书.全书分为五章:*章阐述积分方程与积分算子以及相关的泛函分析理论,方便读者无需特殊准备便可以通读本书;第二章阐述数值积分,重点介绍多维积分与反常积分的外推和分裂外推方法,其中关于带参数的超奇积分的数值方法与外推是首次见于专著;第三、四、五章分别阐述Volterra型积分方程、Fredholm型积分方程和边界积分方程的高精度算法.本书取材新颖,与同类书的内容不雷同,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点,适合从事积分方程和边界元计算的科研工作者和工程计算人员参考,也适合计算数学和应用数学的博士生、硕士生和本科高年级学生作为专业或参考教材.
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
本书系统地介绍模拟退火算法以及这一方法的并行实现和在优化、搜索、机器学习、统计物理中的应用。主要内容包括:模拟退火算法、并行摸拟退火算法、渐近收敛性、冷却进度表、模拟退火算法的应用、改进和变异、Boltzmann机及其存组合优化中的应用。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。
无
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
本书是作者在多年来为四川省部分高校相关理工科专业的硕士研究生、工程硕士生、本科生开设*化方法课程的教学实践和自编教材的基础上,对搜集整理的大量材料做了充分酝酿,反复修改而成的。 教材在课程内容的处理上遵循如下原则:突出方法,注重概念,适当介绍算法的基本理论;强调应用,加强算法实现的基本训练;引导学生主动思考,激发学生的学习兴趣;通过算法到程序设计有序而系统的训练,提高学生程序设计的能力。 全书分为上、下两篇。上篇共9章,介绍无约束*化方法,包括基础知识(介绍凸集的基本性质,函数及凸函数的*性条件),*化问题及无约束*化算法综述,以及求解无约束*化问题的各种算法。下篇共8章,介绍约束*化方法,包括线性规划问题及其解法,非线性规划的*化条件及常用的算法,以及离散系统的动态规划方法等。
本书是根据*对高等院校计算方法课程的基本要求,依据理工科《计算方法教学大纲》,结合本学科的发展趋势,在积累多年教学实践的基础上编写而成的。本书介绍了现代科学与工程中常用的数值计算方法以及有关的基本概念与理论,涵盖了经典数值分析的所有内容,涉及插值与函数*逼近、数值微积分、线性方程组的直接方法和迭代法、一元非线性代数方程的数值解法、矩阵特征值与特征向量的数值解法、常微分方程初值问题数值解法等,着重阐述构造算法的基本思想与原理,既注重理论的严谨性,又注重方法的实用性。所有的数值方法均配有实验,供学生上机实习。每章均配有相当数量的习题,书末附有matlab软件应用简介,便寸:读者参考。 本书阐述严谨、脉络分明、深入浅出、循序渐进、富有启发性,适于教学使用。 本书适合作为高等院校理
本书是计算方法的入门教材,旨在通过一些基本的数值方法来探究数值算法设计的基本技术,诸如缩减技术、校正技术、松弛技术与二分技术等,《计算方法:算法设计及其MATLAB实现(第2版)》追求简约,数值算法的设计与分析尽量回避烦琐的数学演绎,《计算方法:算法设计及其MATLAB实现(第2版)》追求统一,所提供的算法设计技术囊括了快速算法与并行算法等高效算法的设计,《计算方法:算法设计及其MATLAB实现(第2版)》追求新奇,算法的设计机理扎根于博大精深的中华文化,讲授《计算方法:算法设计及其MATLAB实现(第2版)》的基本内容约需36-40课时。
THE major part of this book (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which has been only slightly changed in the present edition.
《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本书是根据清华大学出版社出版的由李庆扬、王能超、易大义编写的《数值分析》教材的配套学习辅导和习题解答教材。编写的重点在于原教材中各章节全部习题的精解详答,并对典型习题做了很详细的分析和提纲挈领的点评,思路清晰,逻辑缜密,循序渐进的帮助读者分析并解决问题,内容详尽,简明易懂。本书对各章的知识点进行了归纳和提炼,帮助读者梳理各章脉络,统揽全局。在《数值分析》教材给出的习题的基础上,根据每章的知识重点,精选了有代表的例题,方便读者迅速掌握各章的重点和难点。 本书可作为工科各专业研究生《数值分析》课程教学辅导材料和复习参考用书及工科考博强化复习的指导书。也可以作为《数值分析》课程教师的教学参考书。
本书详细介绍了常用的数值计算方法,分上、下两册。上册包括误差分析初步,函数插值逼近,数值积分,解非线性方程的数值方法,解线性方程组的直接方法。下册包括解线性方程组的迭代法,线性*小二乘问题,数据拟合,矩阵特征值问题,解非线性方程组的数值方法,常微分方程初值问题和边值问题的数值解法,函数逼近等。本书内容丰富,并且绝大多数算法用伪程序给出,强调数值方法在计算机上的实现。