本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
本书是根据*对高等院校计算方法课程的基本要求,依据理工科《计算方法教学大纲》,结合本学科的发展趋势,在积累多年教学实践的基础上编写而成的。本书介绍了现代科学与工程中常用的数值计算方法以及有关的基本概念与理论,涵盖了经典数值分析的所有内容,涉及插值与函数*逼近、数值微积分、线性方程组的直接方法和迭代法、一元非线性代数方程的数值解法、矩阵特征值与特征向量的数值解法、常微分方程初值问题数值解法等,着重阐述构造算法的基本思想与原理,既注重理论的严谨性,又注重方法的实用性。所有的数值方法均配有实验,供学生上机实习。每章均配有相当数量的习题,书末附有matlab软件应用简介,便寸:读者参考。 本书阐述严谨、脉络分明、深入浅出、循序渐进、富有启发性,适于教学使用。 本书适合作为高等院校理
本书是计算方法的入门教材,旨在通过一些基本的数值方法来探究数值算法设计的基本技术,诸如缩减技术、校正技术、松弛技术与二分技术等,《计算方法:算法设计及其MATLAB实现(第2版)》追求简约,数值算法的设计与分析尽量回避烦琐的数学演绎,《计算方法:算法设计及其MATLAB实现(第2版)》追求统一,所提供的算法设计技术囊括了快速算法与并行算法等高效算法的设计,《计算方法:算法设计及其MATLAB实现(第2版)》追求新奇,算法的设计机理扎根于博大精深的中华文化,讲授《计算方法:算法设计及其MATLAB实现(第2版)》的基本内容约需36-40课时。
THE major part of this book (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which has been only slightly changed in the present edition.
《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
《Voronoi图及其应用》在介绍Voronoi图相关概念和性质的基础上,侧重介绍Voronoi图的构造和应用方面的算法。本书主要内容包括离散点集的Voronoi图与Delaunay三角部分、多边形的Voronoi图、约束Delaunay三角部分以及重心Voronoi图的基本概念、性质、构造算法,及其在多边形剖分、几何搜索、多边形求交、可见性计算、路径规划、碰撞检测、骨架计算、文字特征提取、半色调图像生成以及信息可视化等方面的应用。 《Voronoi图及其应用》可以供从事相关研究的高校教师、科研人员参考,也可作为高等院校计算机相关专业研究生的教材和参考书。本书由杨承磊、吕琳、杨义军以及孟祥旭合著而成。
本书共十二章,包括绪论、预备知识、杆系结构有限元、弹性力学平面问题有限元、空间问题与轴对称、板壳分析初步、板壳有限元分析(续)、弹性力学广义变分原理及其有有限元中的应用、有限元动力分析、非线性有限元初步与材料非线性分析、弹性稳定性与几何非线性分析和其他数值方法(含加权余量、半解析、样条有限元和边界单元法)。前六章供本科高年级学生学习有限单元法用,并可供硕士研究生和部分专业博士生选用。本书取材适宜,由浅入深,内容丰富,引入了不少新内容和科研成果;论述严谨、细致,便于学习;较重视原理与方法的论证,但也有足够的算例,几乎章章都有配书教学软件,便于应用和编程参考。 本书可作为土木、交通、水利和工程力学等专业的本科、硕士研究生教材,也可供有关工程技术人员参考。
本书系统地介绍了数值计算的基本概念、常用算法及有关的理论分析和应用。全书共分10章。第1章是绪论,介绍数值分析中的基本概念;第2~9章包含了数值计算中的基本问题,如线性方程组的数值解法、矩阵特征值和特征向量的数值解法、非线性方程及方程组的数值解法、插值方法、数据拟合和函数逼近、数值积分、数值微分以及常微分方程初值问题的数值解法等;第10章介绍了Matlab软件,并介绍了如何将之应用于数值分析的基本问题计算。读者可将其中的算法和命令用于数值实验和工程计算实践中去。各章都给出典型例题并配有一定数量的习题,书后给出了习题答案或提示。 本书可作为理工科大学工程硕士研究生的“数值分析”课教材,还可作为大学本科及硕士生的学习参考书,同时也可供工程技术人员参考使用。
本书介绍了常用数值计算方法的构造和使用,内容包括线性代数方程、非线性方程和方程组、常微分方程和方程组的数值解法,插值法与数值逼近,数值积分,矩阵的特征值和特征向量的计算等。同时,对数值计算方法的计算效果、稳定性、收敛性、误差分析、适用范围及优缺点也作了必要的分析与介绍。 本书可作为高等院校各类工科专业研究生和数学系各专业本科生教材或参考用书,也可供从事科学与工程计算的科研工作者参考。
本书以*版Matlab为平台,介绍了数值分析与图形可视化的内容。涉及Matlab介绍、数值分析的数学基础、数值分析在工程、科学和数学问题中的应用以及Matlab绘图等内容。本书重点讲述数值分析的思想和原理并图示其结果,尽可能避免过深的数学理论和过于繁杂的算法细节,有助于读者更有效地利用Matlab的超强功能,来处理科学计算问题。 本书可作为各科学和工程专业本科生或研究生的教材或参考书,也可作为科技人员和计算机爱好者的参考工具书。
谢冬秀、左军编著的《数值计算方法与实验(十二五普通高等教育规划教材)》比较全面地介绍了科学与工程计算中常用的数值计算方法,具体介绍了这些计算方法的数学原理与算法及其实现,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。全书共8章,内容包括误差分析、非线性方程求根、线性方程组的直接求解和迭代求解、函数的数值逼近 (代数插值与函数的*逼近)、数值积分与数值微分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。 本书概念清晰,语言通俗易懂,理论分析严谨,结构编排由浅入深.各章附有一定数量的习题,供读者练习使用,书后附有习题答案与提示。 本书可作为高等院校信息与计算科学专业、数学与应用数学专业、计算机专业、通信工程专业等理工科
本书是土木工程研究生系列教材之一。本书系统介绍了有限元法的基础核心理论及其在土木工程领域的应用。本书将重点放在了工程实际问题的计算模型的建立和计算方法的选择上,淡化过程的推导,注重结果的判断。本书既为学生提供了有限元法的基本理论、非线性有限元法及通用有限元软件应用等基本内容,又提供了板壳有限元和其他数值方法等扩展内容。为便于学生学习和掌握有限元软件及其应用,本书配备了ANSYS和MARC软件详细操作步骤和命令流光盘供学生使用。 本书既为土木工程研究生教材,也可供相关领域的科技人员学习参考。
有限元法是工程实际中强有力的数值分析方法之一。美国MSC公司研制的MSC.Marc软件是众多有限元通用软件中的杰出代表。本书把有限元理论和MARC实现有机地结合起来,使读者能深入体验有限元理论与MARC软件之间的紧密关联。学习本书不仅可以循序渐进地掌握有限元基本理论,而且可以培养应用MARC软件解决工程实际问题的能力。全书共分8章,第1章介绍有限元的基本知识,第2章介绍MARC软件的基本用法,第3章至第8章分别介绍平面问题、空间问题、空间轴对称问题、杆系结构、板壳问题以及结构动力问题的有限元法,第3章至第8章每章均有用MARC求解相应工程问题的实例。本书特别适合用力学、机械、土木、水利等领域的科技工作者使用MARC软件的工具和参考书,也可作为理工科院校有关专业高年级本科生、研究生及教师学习有限元理论与MARC软件的教材或参考书。
本书详细介绍了常用的数值计算方法,分上、下两册。上册包括误差分析初步,函数插值逼近,数值积分,解非线性方程的数值方法,解线性方程组的直接方法。下册包括解线性方程组的迭代法,线性小二乘问题,数据拟合,矩阵特征值问题,解非线性方程组的数值方法,常微分方程初值问题和边值问题的数值解法,函数逼近等。本书内容丰富,并且绝大多数算法用伪程序给出,强调数值方法在计算机上的实现。
四元术是元朝朱世杰提出的建立和解答多元高次方程组的方法,它代表了中国古代数学的杰出水平。本书从沈钦裴四元消法法则的统一表示人手,把沈钦裴四元细草用吴消元法的笔算形式表示出来,找到多项式方程组的一般解法。 本书适合数学史工作者、大学数学系师生及计算机专业的师生、中学数学教师及数学爱好者阅读。
本书是根据理工科数学 数值计算方法课程教学基本要求 ,为普通高校理工科各专业本科生和工科各专业硕士研究生编写的教材. 介绍了电子计算机上常用的数值计算方法以及有关的基本概念与基本理论,内容包括:非线性方程与线性方程组的数值解法、插值与逼近、数值积分与数值微分、常微分方程数值解法、矩阵的特征值与特征向量计算. 每章均配有一定量的习题,部分例题附有MATLAB源程序,一些算法给出了框图,书末附有部分习题参考答案. 本书叙述简明,注意深入浅出,言简意赅;淡化严格论证,削弱运算技巧;突出重点,循序渐进. 本书可作为普通高校理工科本科和工科硕士研究生各专业 数值计算方法 或 数值分析 教材,也可供从事科学与工程计算的科技工作者和研究人员参考.
《数值计算方法与算法(第三版)》介绍常用的数值计算方法,内容包括:函数插值、*小二乘拟合、非线性方程求解、线性方程组解法、数值积分和微分、常微分方程数值解法、矩阵的特征值问题等。《数值计算方法与算法(第三版)》例题丰富, 形式多样, 并有C语言和Mathematica语言的例题和习题。