本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
Mathematica是世界著名的数学软件,*的Mathematica 5有许多重大的改进,功能更加完善。本书通过大量精选的实例,讲解Mathematica 5的符号运算、绘图、高精度计算、程序设计等基本功能,介绍它在高等数学、线性代数、微分方程、概率统计、计算方法、运筹学与数学建模等课程中的应用。本书作者具有多年的Mathematica教学和开发经验,通过作者开发的实例,详细指导读者如何编写、调用自己的程序包。书中配备的习题大多来自当今被广泛使用的数学教材,展示了软件的实用性。 本书的读者包括本科生、研究生、大学教师、科研人员、工程技术人员以及其他数学爱好者。本书可以作为数学软件课程的教材,也是学习大学数学的一本通用的辅助教材。对于需要推导计算的科技人员,本书也是一本实用的入门教材,既可以全面深入地学习,又可以即查即用。
本书从函数的非线性逼近出发,介绍了多尺度几何分析方法和理论,以及在图像处理领域中的应用。全书共13章,第1章系统地介绍了推动多尺度几何分析发展的数学和生理学背景,综述了图像的多尺度几何分析方法的历史沿革、*成果及存在的问题;第2章从神经网络、统计估计、逼近论、调和分析等角度研究了多变量目标函数的逼近问题,并指出了这一领域研究的有关问题以及在信号和图像处理中的应用;第3章论述了基于脊波变换的直线特征检测方法;第4章介绍了脊波双框架系统;第5章介绍了自适应连续脊波网络;第6~13章分别介绍了曲线波、梳状波、子束波、楔形波、轮廓波、条带波、方向波和剪切波的基本理论及其应用,应用范围涉及图像压缩、去噪、融合、分割和分类等不同方面。 本书从第3章起每一章都给出了相应的实验方法和实验结果。 本书可
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及逻辑和证明,集合、函数、序列、求和与矩阵,计数,关系,图,树,布尔代数。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
有限元方法是现代科学与工程计算领域中重要的数值方法之一,间断有限元方法则是传统(连续)有限元方法的创新形式、改进和发展。本书系统地阐述了间断有限元的基本理论、思想和方法。 本书主要针对椭圆方程、一阶双曲方程、一阶正对称双曲方程组、对流扩散方程、Stokes方程和椭圆变分不等式等偏微分方程定解问题,介绍各种形式间断有限元方法的构造、稳定性和误差分析、超收敛性质、后处理技术、后验误差估计和自适应计算。 本书可供高等院校计算数学、应用数学、计算物理和计算力学等专业的研究生、教师以及从事科学与工程计算工作的科技人员阅读和参考。
《有限元分析及应用》强调有限元分析的工程概念、数学力学基础、建模方法以及实际应用,全书包括3篇,共分12章;第1篇为有限元分析的基本原理,包括第1章至第5章,内容有:有限元分析的力学基础、有限元分析的数学求解原理、杆梁结构的有限元分析原理、连续体弹性问题的有限元分析原理;第2篇为有限元分析的扩展内容,包括第6章至第8章,内容有:有限元分析中的单元性质特征与误差处理、有限元分析中的复杂单元及实现、有限元分析的应用领域(结构振动问题,弹塑性问题,传热与热应力问题);第3篇为有限元分析的建模、软件平台及实例分析,包括第9章至第12章,内容有:有限元分析的实现与建模、有限元分析的自主程序开发以及与ANSYS平台的衔接、基于ANSYS平台的有限元建模与分析、基于MARC平台的有限元建模与分析。《有限元分析及应用》还给出
本卷包括一元微积分、多元微积分、复变函数、常微分方程、矩阵分析与线性系统、系统辨识、偏微分方程、积分方程共8部分内容。书中从理论与应用方面深入浅出地阐述了各分支中的基本概念、基本理论与基本方法。内容注重背景,强调应用,便于读者加深理解、掌握与应用。本书可供理、工、农、医、经管等领域的广大科技人员,大、中专院校教师、学生及研究生使用。
这是一套在国际上颇具权威性的经典著作(共3卷),由有限元法的创始人zienkiewicz教授和美国加州大学TayIor教授合作撰写。本书初版于1967年,以后经过多次修订再版,深受力学界和工程界科技人员的欢迎。本套书的特点是理论可靠,内容全面,既有基础理论,又有其具体应用。适用于计算力学、力学、土木、水利、机械、航天航空等领域的专家、教授、工程技术人员和研究生。
本书收集了400多道国内外数学值试题,它将抽象的定理,公式,方法隐含于通俗,生动,有趣的题目中,深入浅出,本书适用于中学生、数学竞赛选手及数学爱好者。
本书重点介绍有限单元法的基本理论、程序设计,以及在工程中的应用。主要内容包括:以弹性力学为基础的有限元的概念和基本理论,等参有限元的基本理论和形函数的统一构造方法,主要的高效数值算法和有限元程序设计,以及弹塑性问题、结构动力问题、温度场与温度应力问题、混凝土徐变和粘弹性问题、板壳问题、混凝土细观力学问题。部分章节还包括了作者近年来的*研究成果。本书后附有5个有限元教学程序及其使用说明,供不同专业和不同教学对象选择使用,有的程序可以直接用来解决生产实际问题。 本书可作为水利、土木类相关专业研究生和工程力学专业本科生的教材,也可供高等院校相关专业教师和工程技术人员参考。
本书系统地介绍了非线性不适定问题的正则化求解方法,及其在数学物理研究中的应用。主要包括非线性不适定问题的基本概念,求解非线性不适定算子方程的正则化方法、迭代法、动力系统方法、优化方法、同伦方法以及水平集方法,并在后一部分介绍了反问题的研究方法在应用中的*进展。书中内容包含了作者及其学生近几年来的相关工作。 本书适合数学物理专业的科研人员、大学教师使用,亦可供从事科学和工程领域中反问题计算方法研究的科研人员,高等院校的教师、研究生和高年级的本科生参考。
these notes developed from a course on the numerical solution of conservation laws first taught at the university of washington in the fall of 1988 and then at eth during the following spring. the overall emphasis is on studying the mathematical tools that are essential in developing, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. a reasonable understanding of the mathematical structure of these equations and their solutions is first required, and part i of these notes deals with this theory. part ii deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. i have stressed the underlying ideas used in various classes of methods rather than presenting the most sophisticated methods in great detail. my aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding.
本书以数学工具软件MAPLE,MATLAB,VISUAL FORTRAN,STATIS-TICA的使用为基础,介绍科学和工程中应用数学方法的内容,包括线性代数与矩阵论基础、线性方程组和非线性方程组的数值方法、数值逼近方法(值和拟合、数值积分和数值微分)、线性规划以及无约束和有约束的*化方法等内容、应用统计方法和实验设计以及数据的处理与分析、智能化数据计算处理方法(人工神经网络的BP算法、模拟退火算法和遗传算法)、微分方程组的一些实用算法及程序(微分代数方程的解法和偏微分方程组的配置解法等)。各章都有应用数学工具软件,解决工程技术与科学研究工作中的所到的一些典型问题(特别是与化学和化工相关的问题)作为实例。 本书采用非数学专业人员易接受的方式,对线性代数、数理统计、*化方法、数值计算、方程等课程的内容进行有机地结合,阐述原理
本书介绍了计算机辅助工程分析的基本结构、工业界CAE应用范例、FEMLAB的菜单结构、有限元法简介,介绍了8种典型的形函数等。
本书介绍MSCNastran软件在动力学领域的基本理论和使用方法。内容包括动力学分析方法及Nastran基本功能介绍,模态分析,频率响应分析,瞬态响应分析,响应谱与*响应分析,复特征值分析,使用超单元算法的正则模态分析,动力学建模选项,非线性正则模态,动力优化设计,试验一分析的相关性,动力学设计分析方法DDAM,噪声分析,非线性求解序列SOL400、隐式非线性求解序列SOL 600、显式非线性求解序列SOL700的基本理论、求解方法及其在动力学分析中的应用。本书配有详细的实例操作说明,所选实例均使用MSCPatran作为前后处理器来创建分析模型和进行分析结果评估。本书配套光盘中含有实例的相关源文件,以供学习之用。 本书可以作为汽车、航空航天、军工、电子、土木工程、造船、水利、石油、制造和建筑等行业工程技术人员应用Nastran软件进行仿真分
边界元法是在有限元法之后发展起来的一种精确高效的工程分析数值方法。经过近五十年的发展,它不仅在固体与结构分析领域成为有限元法*重要的一种补充,而且在微机电系统电磁场分析和大型结构电磁波散射分析等领域也得到广泛应用。 本书分为传统边界元法的基本内容和近年发展的快速多极边界元法等新进展两大部分。前七章包含了传统边界元法的基本内容,分为三个单元:前三章为数学力学基础部分,介绍各种问题边界积分方程的建立;第四、第五章为基本数值方法部分,包括分元离散,数值积分和方程求解,并结合二维问题介绍其程序实现;第六、第七章为几类应用专题,主要是含时间问题、几种非线性问题和反问题。 第八、第九章介绍快速多极边界元法和大规模快速多极边界元并行算法,第十二章介绍与边界积分方程相关的边界型无网格法。
Navier-Stokes方程是流体的经典方程。在本书中,我们将从线性的Stokes问题入手,研究如何利用协调有限元方法、有限体积方法以及非协调有限元方法高效求解。然后在强**解情况和非奇异解束两个层面研究定常Navier-Stokes方程理论和高效计算方法,同时介绍求解定常Navier-Stokes方程的三种迭代方法和针对较大雷诺数问题的Euler时空迭代方法。后研究了非定常Navier-Stokes方程的有限元离散方法以及高效全离散方法。
大数因子分解是国际数学界几百年来尚未解决的难题,也是现代密码学中公开密钥RSA算法密码体制建立的基础。《大数因子分解的合数模式特性》从RSA算法存在的不动点中发现了素数因子的分布与特性以及它们之间的连接机制,据此将大数因子分解问题转化为在两个含有素数因子的数之间求公因子问题,将困难的大数因子分解问题转化为一系列算法的初等数学问题,这无疑是研究大数因子分解的重要成果与进展。 《大数因子分解的合数模式特性》介绍的数学研究方法采用计算机作为实验工具,对从事大数因子分解问题研究具有重要学术价值,其成果对于数学家与计算机科学家有重要的理论价值和应用价值。《大数因子分解的合数模式特性》可作为高等学校数学专业﹑计算机专业的本科生和研究生的教材,也可作为广大科学研究人员,特别是从事现代密码分析与信
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、小时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。 本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对
科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代。”创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志。 本书是一部研究量子计算与量子优化算法的学术著作。在简要综述国内外该领域研究成果的基础上,主要篇幅介绍了作者近年来取得的创新性研究成果。全书共8章,主要内容包括:量子力学基础;量子计算基础;基本量子算法;Grover量子搜索算法的改进;量子遗传算法;混沌量子免疫算法,量子蚁群算法,量子粒子群算法;量子神经网络模型与算法;量子遗传算法在模糊神经控制器参数优化设计中的应用。 本书由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。为便于学习,书中给出了多种量子优化算法在搜索、优化、聚类、识别与控制中的应用例