理解磁的量子本性有助于新磁性材料的开发,这些材料可用于永磁体,传感器以及信息存储。要开发这些应用需要掌握基本的物理原理,如对称性破缺、序参量、激发、阻挫以及约化维度。本书从电磁学与量子力学的基本概念开始,合理地阐述了上述理论。书中概述了原子中磁矩的起源以及在晶体内部这些磁矩是如何受局域环境影响的,还介绍了磁矩间的各种不同类型的相互作用。最后几张专门论述金属的磁性和当竞争磁相互作用存在及体系具有约化维度时的复杂行为。 全书理论原理与实际应用相结合,充分讨论了实验技术以及当前研究的热点。本书包括一百多张插图以及一些关于基本原理的附录。 本书作者为牛津大学教授Stephen Blundell。
本书共分13章,系统介绍了d波超导体在超导相的热力学和电磁输运理论,其中包括超导能隙函数、比热及其他热力学量随温度的变化行为,d波超导体准粒子的激发谱、单电子及约瑟夫森隧道效应、无序势散射以及各种电、磁、光或热响应函数的物理性质,同时还分析和总结了相关的高温超导实验结果。
本书与其它传统著作不同,巴塔努尼编著的《对称和凝聚态物理学中的计算方法》首次系统地介绍了现代物理学中三个非常重要的主题:对称、凝聚态物理和计算方法以及它们之间的有机联系。本书展示了如何有效地利用群论来研究与对称性有关的实际物理问题,首先介绍了对称性,进而引入群论并详细介绍了群的表示理论、特征标的计算、直积群和空间群等,然后讲解利用群论研究固体的电子性质以及表面动力学特性,此外还包括群论在傅立叶晶体学,准晶和非公度系统中的高级应用。本书包括大量的mathematica示例程序和150多道练习,可以帮助读者进一步理解概念。本书是凝聚态物理,材料科学和化学专业的研究生的理想教材。
本书是关于群论,特别是点群、空间群、置换群以及他们在凝聚态物理中的应用的专著,同时也是该领域极富盛名的研究生教材。本书内容极其丰富,远超出了一般研究生教材的范围。具体内容包括群的定义和性质、群表示理论的基本定义和定理、群函数、量子力学与群论(包含能级劈裂、选择定则等)、分子系统与群论、分子振动、红外与拉曼活性、晶格对称性、实空间和倒空间的空间群及表示、电子声子色散关系、能带模型、固体中的旋轨耦合、双群、有自旋的能带分析、时间反演对称性、置换群和多电子态张量对称性等,并且在附录中给出了点群、空间群、双群的相关表格。 本书适合从事凝聚态物理科研工作的读者参考,也可作为物理学相关专业研究生的教材。
精确可解统计模型在凝聚态物理、可积场论和数学中都有重要应用,是理论物理的前沿课题.与椭圆函数相关的格点模型的极限既能给出三角型和有理型的格点模型,又能包含更多的参量,因此受到了特殊的重视.本书详细介绍了杨-Baxter方程等格点模型的基础知识,同时重点介绍了两种等价的椭圆型格点模型:ZnBelavin模型和IRF面模型,旨在分析Jacobi 函数在研究这些模型中的处理方法.书中广泛应用图示法进行推导,这种直观、便于掌握的方法是学习格点模型和可积场论时常用的.
本书详细介绍了凝聚态物理中常用的单体格林函数和多体格林函数的基本理论。对于多体格林函数,介绍了费恩曼图形技术和运动方程法。对格林函数在一些方面的应用做了介绍,主要是在弱耦合超导体、海森伯磁性系统和介观输运方面的应用。 本书对于概念的说明与公式的推导力求详尽、全面,内容由浅入深。便于读者学习。读者需要具备量子力学和统计力学的基本知识。
位错理论起源于用弹性体中位错的行为来解释晶体的范性性质,尔后发展成为晶体缺陷理论的一个重要独立部分。现代位错理论已是金属力学性质微观理论的基础,位错与固体各种结构敏感的物理性质都有相当的联系,在理论上也取得了若干新进展。本书内容是位错理论的基础,分为两卷出版。卷主要论述位错的经典弹性理论、点阵理论以及特定具体点阵中位错的精细结构;第二卷介绍位错与点缺陷的相互作用,位错攀移理论,位错集合与位错间界,位错在固体物理性质中的作用,大形变问题及一些新进展。
可解统计模型在凝聚态物理、可积场论和数学中都有重要应用,是理论物理的前沿课题。与椭圆函数相关的格点模型的极限既能给出三角型和有理型的格点模型,又能包含 多的参量,因此受到了特殊的重视本书详细介绍了杨Baxter方程等格点模型的基础知识,同时重点介绍了两种等价的椭圆型格点模型:Belavin模型和IF面模型,旨在分析 Jacobi函数在研究这些模型中的处理方法。书中广泛应用图示法进行推导,这种直观、便于掌握的方法是学习格点模型和可积场论时常用的本书推导详细,便于初学者阅读,可作为学习理论物理的大学生、研究生及相关领域的科技工作者学习格点统计模型的教学参考书。