本书探讨了近代中国如何参照西学,重新类分学术,从而建立新的系统,奠定今天的学术发展格局。这个过程既推动了中国学术融入世界,也改变了系统逻辑和传统思维。 知识分类是一个切入点,于上透视西方文明如何在“物之序”的层面冲击并改造固有学术,把现代学科看成须在后殖民意义上予以检省的文化冲击的结果;于下把学科概念、学术范畴、科目关系、系统结构、知识形态等分散的关节点,整合成由点到面、由外及内的网络联动体系,深入细部的同时总揽全局。 对知识纲目、系统结构、学术理念变化与重组的研究,展现了单一学科史难以传达的学术路径和知识全景图的改易,有助于深入把握近代学术乃至中国社会的转型与再造,有利于重新检省国人对西学的理解与接受,推动今后的学术发展与文明对话——既包括中西文化的平等交流、古代传
《漫话普洱茶》普洱茶辨伪 目录 普洱茶概念 普洱茶的制作、存放、口感及药理作用 普洱茶辨伪 茶区考察散记 茶人与茶 茶友看茶 网络茶话
《界面力学(精)》共 11章。章绪论,介绍界面的分类、形成和本书的 主要内容。后10章分为两篇。固体界面力学篇和受限 流体界面力学篇。固体界面力学篇,共6章,介绍了 固体接触力学、界面滑动分析、界面黏着滑动、界面 接触刚度、滚动分析和接触疲劳力学等内容。本篇对 界面滑动、摩擦理论、黏滑等现象和产生原因做了分 析。分析了不同接触条件下的接触刚度,介绍了纯滚 、滑滚、滚动疲劳破坏等现象和机理。受限流体界面 力学篇,共4章,首先分析了流体在界面上的吸附一 解附机理和湿润性对界面性能的影响。然后对当前常 用的求解界面流体力学问题的三种方法雷诺方程 、分子动力学和玻耳兹曼输运方程做了介绍。之后介 绍了有序分子膜、LB膜和液晶的润滑机理和性能。最 后,本书还对边界层的形成界面滑移现象做了较深入 的探讨,介绍了由边界滑移
本书是一部非常经典的介绍有限群线性表示的教程,原版曾多次修订重印,作者是当今法国最突出的数学家之一,他对理论数学有全面的了解,尤以著述清晰、明了闻名。本书是他写的为数不多的教科书之一,原文是法文(1971年版),后出了德译本和英译本。本书是英译本的重印本。它篇幅不大,但深入浅出的介绍了有限群的线性表示,并给出了在量子化学等方面的应用,便于广大数学、物理、化学工作者初学时阅读和参考。
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。本书介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,本书详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。本书可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
本书以农业农村部抹茶全产业链协同攻关项目试验研究成果和抹茶龙头企业实践经验技术为支撑,涵盖了抹茶发展历程、茶园建设、栽培管理、遮阳覆盖、加工工艺、机械装备、品质审评、贮藏包装和多元化利用等配套技术。同时,书后附有抹茶技术标准、相关专利和产业记事等。全书内容系统全面,文字通俗易懂,技术新颖实用,编写图文并茂,具有较强的理论性和实用性,是一部较全面系统论述抹茶产业的专著,适合从事抹茶生产、科研、教育、应用和营销专业人员阅读参考。
书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:第1版 装帧:装 开本:16 商品标识: 书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:di1版 装帧:装 开本:16 商品标识: 《写给全人类的数学魔法书》编辑推荐:全日本校长永野裕之*新力作! 全日本受欢迎的数学书! 日本yamaxun一般数学类别*!冲破惯常的数学学习法,告诉你数学到底是个什么东西,为什么 越是死记硬背公式,就越学不好数学 ;书中详尽介绍10种*基本解题思路,只要熟练掌握,就能轻松应对各种类型数学题,尤其是难度较高的高考真题;书中回答了 怎样听课 怎样
作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
本书总结了南京菜形成以及制作工艺特色,对烹饪技术要领、风味、传统工艺等方面,作了详细介绍。
本书内容包括:欧氏平面的拓广;一维射影变换;二维射影变换;二次曲线;变换群与几何学;三维射影几何;几何基础发展简史;几何;欧氏几何;非欧几何;一般域上的射影几何。每一章都包括内容提要和习题两部分。习题答案、提示和解答集中在本书的后面。 本书与《高等几何》(梅向明等编,高教出版社1983年)配套,是师范院校数学专业本科生的教学参考书。
《基因组学概论(第二版)》的内容框架设计独具匠心,作者把基因组比拟为生物学研究的集线器。由此分层次介绍了DNA、蛋白质序列和结构、基因组、蛋白质组、转录组和系统生物学内容,也分别对原核生物、真核生物、人类基因组结构和特性进行了介绍和比较,并将基因组变化和进化联系起来。 《基因组学概论(第二版)》的布局特别适合教学需要,每章均先指明学习目标,学习内容有章有节,循序渐进,逐步展开,关键字设有标签进行简要说明。《基因组学概论(第二版)》的图表丰富,有助理解,每章结束时提供了参考文献,让有兴趣的读者深究;布置的练习,可帮助读者复习和进一步思考,而网络问题则能引导读者借助于各种网络工具深入学习和研究基因组。
本书是就各地区高考数学压轴题所编写的破题攻略,面向中等程度及以上的学生。全书将近几年出现频率较高的热点试题进行分类总结,形成套路,通过典型例题深度剖析讲解注重数学各知识点间的联系,做到透析考情考向、提升解题技能,拓宽解题思路。并在每个章节后面设置了“学以致用”部分练习,配有对应高考真题、部分优秀模拟试题加以训练巩固。供学生举一反三练习,巩固该知识点。 书中部分题目配有视频讲座。
本书是教研员、优秀教师、命题专家和数学解题爱好者等集体智慧的结晶, 本书的题目都是来源于 2000 人 QQ 群“高中数学解题研究会”群友精挑细选的全国各地的高考试题、模拟试题、自编题和改编题,即群内的 “ 每日一题 ” 。每道题都是在群里经过千人大讨论,最后整理出精妙典型且适合学生的解法(忍痛删去了高等数学的解法),再筛选优质题目和解法汇聚而成 的解题秘籍。 编写组经过一年多的反复筛选,最后精选百题、精彩千解,将其中最精华的部分精雕细琢成书奉献给亲爱的读者朋友们,以分享解题之快乐! 目录 第 1 讲 形式各异最值题 方法多样显实力 第 2 讲 多姿多彩恒成立 精彩各异策略多 第 3 讲 寻觅函数性质特征 巧设构造突破难点 第 4 讲 双变量求最值 多角度有妙解 第 5 讲 活用三
本书是解读望月新一“跨视宇Teichmüller理论(IUT理论)”的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本“IUT理论”的解读手册。书中侧重解读“IUT理论”的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与*数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解“IUT理论”的入门读本,也适合作为学生了解数学思考方法的参考读物。
内容简介 自文明诞生以来,人类从未停止过对“无穷”的探索和研讨。你可能需要一本指导手册,带你开启无穷领域的无边漫游! 在物质世界中,无穷是否真的存在?多重宇宙的猜想是不是空穴来风?怎样制作无尽的相似图形?逻辑系统永远不能自洽?无穷小有多小?无穷大又有多大? 本书共收录63个主题,以思维漫游的形式为读者介绍“无穷”的奥秘。同数学家、哲学家一起讨论逻辑相悖的话题,了解革新艺术、计算机,甚至人类认知领域的经典数学理论。在这场虚拟的漫游旅途中,读者将在无限拓展思维、认知与情感的同时,收获更加灵活、多元的视角,看待已知及未知的世界。 目录 引 言 ·欧几里得完美的证明 对无穷岛的搜寻 健康警告 【旅程的开端】
《应用力学教程:流体动力学程序引论》译自Elsevier公司于2004年出版的乔纳斯?A?朱卡斯(Jonas A.Zukas)博士所著《Introduction to Hydrocodes》。书中包含了流体动力学程序的基础物理知识与基本内容,如离散方法、动力学(拉格朗日、欧拉和耦合方法)、高应变率下材料行为和失效模型、人工粘性、时间积分方法、拉格朗日程序的实际工作方式及可替代算法(从简单的欧拉方法到当前研究最多的无网格法),阐述了用于得到高应变率下材料数据的实验方法及使用流体动力学程序过程中容易出现的主要错误。通篇还提供了大量的例子来阐明基本概念,同样有价值的是《应用力学教程:流体动力学程序引论》引用的参考文献。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
暂无内容简介。。。。。。