1、开本小,方便携带。 2、高度浓缩知识精华,内容精准,详略得当。 3、考试,一本在手,考试无忧。
初高中数学衔接用书 简介 高中数学的学习就像一趟冒险之旅!不要害怕,本书为你精心准备了如下内容: 装备 高中必需而初中没学的知识,像是 简单的逻辑联结词 值不等式的解法 射影定理 等; 求生技能 高中要用到的运算、推理、绘图等技能,像是用 十字相乘法 和 分组分解法 分解因式,用 平移 和 对称 画函数的图象等; 来自高手的 经验分享 高中常用的解题思路,本书为你编排了丰富的例题,每一题都做了 如何思考问题 的解析。 本书的前身《初高中数学衔接读本》获得了万千学子的认可和高中老师的推荐。全新升级后,《初高中数学衔接用书》与2019版高中数学教科书无缝衔接,相信一定能助力你的高中数学学习之旅。 本书包括知识讲解、例题、习题和习题参考答案等几部分内容,其中涉及的新知识是高中数学学习但初
本书主要讲解初中几何辅助线的添加方法和技巧,主要内容包括中点模型的构造,角平分模型的构造,弦图的构造及应用、图形的三大变换以及梯形、圆的辅助线添加,每章包含中考分析、知识讲解、方法技巧、经典例题、试题,可以达到学而练的目的,从而使中考几何不再可怕。
贴近教材,贴近学生的实际.有利于促进初中活动课程的开展,满足学有余力的学生学习数学的愿望,激发学生学习数学的兴趣,培养学生应用数学的能力和创新的意识,发展他们的数学能力.
《动点问题》的大致内容:线段与角中的动点问题、三角形中的动点问题、四边形中的动点问题、圆中的动点问题、圆与多边形结合中的动点问题、函数图象与动点问题、动点问题在综合题中的策略与方法、动点问题的实践与思考。每一讲就一个问题给出几种解题方法,每讲分以下四板块:解题依据:梳理本专题讲解内容所需的定义和性质,为后面的解题方法和计算做好铺垫,打好基础;典型例题:例题具有代表性和典型性,覆盖面广,涉及七年级到九年级的数学内容.每个例题不仅给出方法,还给出选择此方法的理由;方法归纳:对于每类题通过几个例题的讲解,总结这类题目解题方法,让学生在解题时有方法可依,使学生在解题时有思路,有想法,不是无从下手;巩固提升:每个专题精选了练习题,让学生运用所学方法进行做题,提升自我。
本书提供了将公式和数据转换为几何形式的指令,为学生提供了一系列精心设计的问题,旨在阐明函数和图像的功能及属性。首先采用简单的函数来分析构造图的基本方法,然后介绍线性函数、二次三项式、线性函数、幂函数和有理函数等更复杂问题的解决方法。
学奥数,这里总有一本适合你 自从2000年《奥数教程》丛书中首次在图书中使用“奥数”一词以来,华东师范大学出版社已陆续出版近200种“奥数”图书,形成多品种、多册层次全系列。 “奥数”入门篇——《从课本到奥数》(1-9年级)A、B版 “奥数”智优篇——《优等生数学》(1-9年级) “奥数”辅导篇——《奥数教程》、《学习手册》、《能力测试》(一至高三年级) “奥数”小学*篇——《高思学校竞赛数学课本》、《高思学校竞赛数学导引》 “奥数”专题篇——《数学奥林匹克小丛书》(小学、初中、高中共30种) “奥数”题库篇——《多功能题典 数学竞赛》(小学、初中、高中共3种) “奥数”高中预赛篇——《高中数学联赛备考手册(预赛试题集锦)》 “奥数”联赛冲刺篇——《高(初)中数学联赛考前辅导》 “奥数”IMO 终极篇——《走向IM
坐标方法 是一种将几何图像转换为公式的方法,一种通过数字和字母来描述图像的方法,表示常量和变量。本书探讨了通过坐标方法,几何概念到数字语言的转换,以便定义一个点在空间中的位置。 共分两个部分,*部分介绍直线上点的坐标、平面中点的坐标以及空间中点的坐标,第二部分讨论坐标方法的有趣应用。为了读者能更有效地使用本书,作者在书中边缘留有一系列有用的 道路标志 ,提醒读者需要特别注意的内容,以引导读者进行更深入的探究。
本书是根据课标要求编写的数学教材中的精华读本,提纲挈领的将教材中的重难点囊括其中,方便学生快速记忆。本书内容包括数与代数、图形与几何、统计与概率三部分,按照教材顺序,结合课标要求,提炼核心知识,分考点条目化讲解,便于学生形成系统化的知识体系,迅速提高自己的应考能力,达到事半功倍的效果。 通过 等车记一记,坐车看一看,操场读一读,排队念一念,睡前忆一忆,考前背一背 等,让学生做到 考前一分钟,赢在考场中 。随时随地,想学就学。
本书采用循序渐进的方式, 逐步介绍各种基本的计数原理和计数模式, 深入浅出, 例题丰富,着重突出各种计数模式所适用的计数场合, 强调区分计数对象的重要性。对中学生来说,从中不仅可以学到计数知识,而且还可以学到逐步展开、逐步深入地思考问题的治学精神和治学方法. 本书是中学数学教学内容的有力补充, 可供学有余力的中学生课外阅读.