上册:知识梳理。带你全面掌握高中生物竞赛知识点 下册:例题解析、针对训练。每章20例赛题解析,3100多题针对训练,满足参加高中生物竞赛学生的训练需求
暂无内容简介。。。。。。
全国中学生数学冬令营是在全国高中数学联赛的基础上进行的一次较高层次的数学竞赛,后改名为中国数学奥林匹克。《历届中国数学奥林匹克试题集(1986~2014)》汇集了届至29届中国数学奥林匹克竞赛试题及解答,适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用。
《培养超级天才的奥数思维游戏:4阶》通过游戏的方法来学习数学,孩子可以活跃左右脑,发掘大脑潜能,在获得数学基础知识的同时,培养良好的数学思维能力和问题解决能力,并充分感受数与形的智慧、美妙,真正喜欢数学、爱上数学,从数学游戏中获得快乐!
承蒙读者厚爱,《数学奥林匹克中级读本》(三版)(简称“中级读本”)出版发行仅两年多各册就已加印了七八次,销售总量近二十万册,在众多“数奥”类书中能取得如此成效,实属不易,究其原因,是它的编写原则“源于教材,高于教材,与课内教材严格同步,通俗易懂,既具有普及型、大众化,又能满足各类数学竞赛的基本知识要求”在根本作用。当然,也与它配有丰富的、与正文内容紧密配套的A、B两组练习题供读者选用有关。 写此套练习题详解我们遵循的原则是: 每一讲的练习题的解法都紧扣该讲内容及例题中所讲的知识和方法,基本知识不超前; 解法尽可能地选择简易的,使之易讯、易懂、易接受; 提供多样性的解法,使读者能从不同角度去理解、去掌握; 详略适度,使读者既能顺畅地读懂它,又不至于感到“太繁琐”。 在初
在世界体育史上,奥林匹克运动起源于古希腊人关于灵活,力量与美的竞赛。它因古希腊的一个地名——“奥林匹克”而得名。 数学奥林匹克,指的就是数学竞赛活动。数学竞赛是一项传统的智力竞赛项目,它对于激发青少年学习数学的兴趣,拓展知识视野,培养教学思维能力,选拔数学人才,都有着重要的意义。数学竞赛活动始于114年前的匈牙利,除战争等原因中断了7年之外,这个竞赛每年10月都要兴行,沿袭至今。1934和1935年,苏联开始在列宁格勤和莫斯科举办中学数学竞赛,并冠以“数学奥林匹克”的名称。从此,这一名称就正式出现了。到1959年,罗马尼亚数学物理学会向东欧等7国发出邀请,在布加勤斯特举办“届
本书对数学奥林匹克的历史和发展,奥林匹克数学及其牲,奥林匹克数学与数学教育,奥林匹克数学的内容和方法,以及数学奥林匹克命题理论和数学奥林匹克解题理论等方面进行了系统研究和探讨,全书内容丰富,观点鲜明。 本书可供高等师范数学系师生、从事数学奥林匹克教学和研究的人员以逐鹿中原学数学教师和数学爱好者阅读。
数论,是一个重要的数学分支,肇源极古。 数学竞赛中常常出现初等数论问题。这类问题,利用极少的知识,生出无穷的变化,千姿百态,灵活多样。 本书通过数学竞赛问题介绍初等数论的一些基本概念和方法。希望读者阅读此书时,带着纸和笔,在看例题的解答之前,先试着刍己动手,这样才能真正体味出解题的窍门。
本书介绍了组合几何中的一些简单而有趣的数学问题,其中绝大多数问题都是本书首次提出,如凸n点组、r-点直线、覆盖直线、最点直线、r-点圆、r-相交、互交组、聚交组、等距点集、整距点集、格径r点问题、极角问题、最省分割、均匀分隔、完全分隔、最省分隔、独立同色形、相关同色形、最省覆盖、多重覆盖、覆盖次数等等。这些问题,内容虽然简单,但要解决它们,却是相当困难的,这也正是组合几何的魅力所在。本书涉及的内容,大都是作者的研究成果,但为了系统起见,本书也选编了几个的组合几何问题,如克莱因(E.Klein)问题、赫尔伯伦(Heilbronn)问题、波利亚(Polya)问题、覆盖问题等。这些问题中属于其他作者的研究结果,都在书中一一注明,以示尊重。但也有个别结果不知出处,因而,只“援引作者的证明,而不是援引他们的姓名”(帕斯卡语)。在此,
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
我国组队参加国际学科奥林匹克竞赛,是在广泛开展全国性学科竞赛系列活动的基础上开始的。多年的实践证明,学科竞赛对帮助青少年树立科学、爱科学、用科学的良好风尚发挥了积极的作用,并已成为青少年广泛参与的普及性学科竞赛活动。 学科竞赛旨在培养学生的学科兴趣,拓宽学生的知识面,是学有余力的学生的重要的课余活动。 学科竞赛方面的读物很多,多数是解题,使同学们掉进题海中不能自拔、不能举一反三。 本丛书作为竞赛教材编写,既注意到知识覆盖面,又强调了重点、难点;既注意到基本概念的阐述,又强调了应用,提高解题能力;既注意到知识性,又强调了趣味情。这样使读者怀着好奇心去阅读本丛书,从阅读中去理解基本概念,再从理解中去应用基本概念,达到增强解题能力、举一反三的效果。
我们本着为数学竞赛的普及、提高做点有益事情的愿望,在全国范围内组织一批长期从事数学竞赛且做出杰出成绩的一线专家编写了一套“高中数学竞赛专题讲座丛书”。丛书包括《排列组合与概率》、《初等数论》、《函数与函数方程》、《复数与多项式万、《不等式》、《组合问题》、《数列与归纳法》、《集合与简易逻辑》、《三角函数》、《立体几何》、《平面几何》、《解析几何》和《数学结构思想及解题方法》13种。
我国组队参加国际学科奥林匹克竞赛,是在广泛开展全国性学科竞赛系列活动的基础上开始的。多年的实践证明,学科竞赛对帮助青少年树立科学、爱科学、用科学的良好风尚发挥了积极的作用,并已成为青少年广泛参与的普及性学科竞赛活动。 学科竞赛旨在培养学生的学科兴趣,拓宽学生的知识面,是学有余力的学生的重要的课余活动。 学科竞赛方面的读物很多,多数是解题,使同学们掉进题海中不能自拔、不能举一反三。 本丛书作为竞赛教材编写,既注意到知识覆盖面,又强调了重点、难点;既注意到基本概念的阐述,又强调了应用,提高解题能力;既注意到知识性,又强调了趣味情。这样使读者怀着好奇心去阅读本丛书,从阅读中去理解基本概念,再从理解中去应用基本概念,达到增强解题能力、举一反三的效果。
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
承蒙读者厚爱,《数学奥林匹克中级读本》(三版)(简称“中级读本”)出版发行仅两年多各册就已加印了七八次,销售总量近二十万册,在众多“数奥”类书中能取得如此成效,实属不易,究其原因,是它的编写原则“源于教材,高于教材,与课内教材严格同步,通俗易懂,既具有普及型、大众化,又能满足各类数学竞赛的基本知识要求”在根本作用。当然,也与它配有丰富的、与正文内容紧密配套的A、B两组练习题供读者选用有关。 写此套练习题详解我们遵循的原则是: 每一讲的练习题的解法都紧扣该讲内容及例题中所讲的知识和方法,基本知识不超前; 解法尽可能地选择简易的,使之易讯、易懂、易接受; 提供多样性的解法,使读者能从不同角度去理解、去掌握; 详略适度,使读者既能顺畅地读懂它,又不至于感到“太繁琐”。 在初