暂无内容简介。。。。。。
人们永远希望更好、更快、更强,所以就出现了各种竞技活动。数学,作为锻炼思维的体操,一门可以充分展现头脑灵活度的学科,理所当然地被选择用来比试人们的思维、发现的能力和作为培育数学人才的工具,于是就出现了中学数学竞赛。
在这套《真题》即将出版之际,作为编者,我们有很多话想对读者朋友们说。前人说过,“数学是思维的体操”,“聪明人的游戏”。毫无疑问,作为数学普及活动的各种数学竞赛(大到IMO,小到地区性的赛事),曾经润泽了众多的师生。课外数学活动在启发数学学习兴趣和提高解决数学问题能力方面所发挥的作用,就我国基础教育来说,不是可有可无,而是不可或缺。也正因如此,几十年来,包括数学竞赛在内的数学课外活动受到广大师生和家长的长期欢迎和支持。 众所周知,各类数学竞赛的命题大多由术业专攻、经验丰富的专家、老师负责。因此,就题目的质量来说,无论是命题深度,还是解题的灵活度,都远超过同学们日常所做的题目。我们本着“精中选精”、“举一反三”、“既可查又可做”的目的,对精选出的各类题目进行了深加工,力争本书既“
覆盖1991~2002年国际数学奥赛竞赛题。精心分类,优化解题,立足前沿,打造竞赛工具书。
人们永远希望更好、更快、更强,所以就出现了各种竞技活动。数学,作为锻炼思维的体操,一门可以充分展现头脑灵活度的学科,理所当然地被选择用来比试人们的思维、发现的能力和作为培育数学人才的工具,于是就出现了中学数学竞赛。
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
本书对数学奥林匹克的历史和发展,奥林匹克数学及其牲,奥林匹克数学与数学教育,奥林匹克数学的内容和方法,以及数学奥林匹克命题理论和数学奥林匹克解题理论等方面进行了系统研究和探讨,全书内容丰富,观点鲜明。 本书可供高等师范数学系师生、从事数学奥林匹克教学和研究的人员以逐鹿中原学数学教师和数学爱好者阅读。
本书对数学奥林匹克的历史和发展,奥林匹克数学及其牲,奥林匹克数学与数学教育,奥林匹克数学的内容和方法,以及数学奥林匹克命题理论和数学奥林匹克解题理论等方面进行了系统研究和探讨,全书内容丰富,观点鲜明。 本书可供高等师范数学系师生、从事数学奥林匹克教学和研究的人员以逐鹿中原学数学教师和数学爱好者阅读。
数论,是一个重要的数学分支,肇源极古。 数学竞赛中常常出现初等数论问题。这类问题,利用极少的知识,生出无穷的变化,千姿百态,灵活多样。 本书通过数学竞赛问题介绍初等数论的一些基本概念和方法。希望读者阅读此书时,带着纸和笔,在看例题的解答之前,先试着刍己动手,这样才能真正体味出解题的窍门。
我国组队参加国际学科奥林匹克竞赛,是在广泛开展全国性学科竞赛系列活动的基础上开始的。多年的实践证明,学科竞赛对帮助青少年树立科学、爱科学、用科学的良好风尚发挥了积极的作用,并已成为青少年广泛参与的普及性学科竞赛活动。 学科竞赛旨在培养学生的学科兴趣,拓宽学生的知识面,是学有余力的学生的重要的课余活动。 学科竞赛方面的读物很多,多数是解题,使同学们掉进题海中不能自拔、不能举一反三。 本丛书作为竞赛教材编写,既注意到知识覆盖面,又强调了重点、难点;既注意到基本概念的阐述,又强调了应用,提高解题能力;既注意到知识性,又强调了趣味情。这样使读者怀着好奇心去阅读本丛书,从阅读中去理解基本概念,再从理解中去应用基本概念,达到增强解题能力、举一反三的效果。
蔡玉龙编著的这本《数学奥林匹克不等式证明方法和技巧》分为上下两册。 上册共包括十三章:章比较法证明不等式,第二章二元、三元均值不等式的应用,第三章均值不等式的应用技巧,第四章柯西不等式及其应用技巧,第五章联用均值不等式和柯西不等式证明不等式,第六章柯西不等式的推广、赫德尔不等式及其应用,第七章不等式am+n+bm+n≥ambn+anbm及其推广——米尔黑德定理的应用,第八章舒尔不等式的应用,第九章排序不等式与切比雪夫不等式及其应用,第十章琴生不等式及其应用,第十一章放缩法证明不等式,第十二章反证法证明不等式,第十三章调整法与磨光变换法证明不等式。 下册共包括十一章:第十四章函数和微积分方法证明不等式;第十五章几何方法证明不等式;第十六章数学归纳法证明不等式;第十七章运用Abel变换证明不等式;第十八
《历届全国初中数学竞赛经典试题详解》博采了众家之长,又敢于标新立异。作者精选了历届全国、省、市初中数学竞赛试题,远远突破了1000道题,所选的每道题都有详细解答,这无疑提升了它的使用价值和性,这也是本书有别于其他同类书而独具的特色。三书的三段小插曲,即“解题策略大盘点(1)(2)(3)”将初中数学常用的解题策略的技巧,通过对典型例题精辟的分析和详尽的讲解,系统地介绍给中学生读者,深入浅出,通俗易懂,同学们乐于接受也容易掌握,这是本书的又一大特色。
全国中学生生物学联赛浙江赛区竞赛委员会编著的《全国高中生物学竞赛教程(上下)》分为上、下两册。编写体例还是遵循“知识梳理、例题解析和针对训练”的思路,保持简明扼要、深入浅出的风格。为提高学生解题的分析
《奥赛物理题选》集录奥赛物理训练题目,包括针对性的讲解和答题思路。分两部分:“假期辅导班题选”部分,按普通物理力、热、光、电、近代物理的顺序,分篇集录作者多年积累的训练试题和解答;“假期辅导班联谊赛试题”部分,是在假期训练班上,组织听课学生间的联谊赛,历年试题汇编而成。