《示性类》内容简介:The text which follows is based mostly on lectures at PrincetonUniversity in 1957. The senior author wishes to apologize for the delayin publication.The theory of characteristic classes began in the year 1935 with almostsimultaneous work by HASSLER WHITNEY in the United States andEDUARD STIEFEL in Switzerland. StiefeI's thesis, written under thedirection of Heinz Hopf, introduced and studied certain "characteristic"homology classes determined by the tangent bundle of a smooth manifold.Whitney, then at Harvard University, treated the case of an arbitrary spherebundle. Somewhat later he invented the language of cohomology theory,hence the concept of a characteristic cohomology class, and proved thebasic product theorem.
《极值正则变差和点过程(影印版)》讲述了学习独立同分布变量和向量的极值现象的数学背景和过程技巧。重在强调极值的三个重要的话题,规则变化函数的解析理论,点过程和测度的概率论,度量空间概率测度的若收敛的渐进分布逼近之间的联系。目次:基础;吸引域和规范常数;收敛的质量;记录和极过程;多变量极值。
《爱上科学》系列科普丛书为读者全面地讲述了科学知识和原理,以通俗的文字、生动的图表为特色,每本书介绍一个或几个主题。从日常生活中有趣的现象出发,引导和培养读者学习的兴趣,扩宽读者的视野,同时还可以帮助读者学习英语词汇、练习英语阅读。丛书涵盖物理、化学、生物、科技与发明这4个系列。适合对科学知识感兴趣的广大科普爱好者阅读。《爱上科学——原子、分子与物态(双语版)》是化学系列中的一本。化学系列主要阐释现代化学的基本概念,涵盖化学反应、有机化学、生物化学、金属、非金属、分子、原子、物态等多方面内容。宇宙中的一切都是由物质所组成,它们以液体、固体或气体的形式存在。这本《爱上科学——原子、分子与物态(双语版)》详细讲解了原子的结构和性能、原子是如何组成分子的、物质存在的三种形态等多方面内容
《线性代数(第4版)》讲述了:Thistextbookgivesadetailedandprehensivepresentationoflinearalgebrabasedonanaxiomatictreatmentoflinearspaces.Forthisfourtheditionsomenewmaterialhaeenaddedtothetext,forinstance,theintrinsictreatmentoftheclassicaladjointofalineartransformationinChapterIV,aswellasthediscussionofquaternionsandtheclassificationofassociativedivisionalgebrasinChapterVII.ChaptersXIIandXIIIhavebeensubstantiallyrewrittenforthesakeofclarity,butthecontentsremainbasicallythesameaefore.Finally,anumberofproblemscoveringnewtopics-e.g.plexstructures,Caylaynumbersandsymplecticspaces-havebeenadded....
《模形式与费马大定理(英文)》中介绍和扩充讲述了wiles的许多观点和技巧,并阐述了他的结果是如何与ribets定理、frey,serre思想的结合,来证明费马最后定理。从一个完整的证明开始,紧接着用一些章节介绍了双曲线、模函数、曲线、伽罗瓦上同调和有限群的基本概念。表示理论是整个证明的核心,在一章有关自同构表示论和langlands-tunnell定理给出,紧随其后深度介绍serres猜想、伽罗瓦变形、一般变形环、hacke代数。此书以回顾和展望作为结束,既反映了这个问题的历史,又将wiles定理放在了一个更加一般的diophantine背景,给出了预期应用。数学专业的学生和老师将会发现这本书是一部很难得参考书。
《可压缩流的大涡模拟方法(英文)》旨在讲述les基础及其在实践中的应用。为了程度地缩小理论框架之间的衔接,缓解les研究和日益增长的工程模型应用中的需求之间的矛盾,《可压缩流的大涡模拟方法(英文)》程度地将和该领域有关论题囊括其中,用全新的方式全面讲述了les理论及其应用。
《旋量与时空(卷)》 is the first to present a prehensive development of space-time geometry using the 2-spinor formalism. There are also several other new features in our presentation. One of these is the systematic and consistent use of the abstract index approach to tensor and spinor calculus. We hope that the purist differential geometer who casually leafs through the book will not automatically be put off by the appearance of numerous indices. Except for the occasional bold-face upright ones, our indices differ from the more usual ones in being abstract markers without reference to any basis or coordinate system. Our use of abstract indices leads to a number of simplifications over conventional treatments.
《旋量与时空(卷)》isthefirsttopresentacomprehensivedevelopmentofspace-timegeometryusingthe2-spinorformalism.Therearealsoseveralothernewfeaturesinourpresentation.Oneoftheseisthesystematicandconsistentuseoftheabstractindexapproachtotensorandspinorcalculus.Wehopethatthepuristdifferentialgeometerwhocasuallyleafsthroughthebookwillnotautomaticallybeputoffbytheappearanceofnumerousindices.Exceptfortheoccasionalbold-faceuprightones,ourindicesdifferfromthemoreusualonesinbeingabstractmarkerswithoutreferencetoanybasisorcoordinatesystem.Ouruseofabstractindicesleadstoanumberofsimplificationsoverconventionaltreatments.
《流形上的层(英文)》指出层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
《示性类》内容简介:The text which follows is based mostly on lectures at PrincetonUniversity in 1957. The senior author wishes to apologize for the delayin publication.The theory of characteristic classes began in the year 1935 with almostsimultaneous work by HASSLER WHITNEY in the United States andEDUARD STIEFEL in Switzerland. StiefeI's thesis, written under thedirection of Heinz Hopf, introduced and studied certain "characteristic"homology classes determined by the tangent bundle of a smooth manifold.Whitney, then at Harvard University, treated the case of an arbitrary spherebundle. Somewhat later he invented the language of cohomology theory,hence the concept of a characteristic cohomology class, and proved thebasic product theorem.
《原子、分子和光子(第2版)》是讲述原子和分子物理的入门级书籍,通过许多实验验证介绍了过去两个世纪原子和分子模型的进展;从理论方面,介绍了量子物理到微粒子的大量描述。运用许多例子剖析了粒子波模型,呈现出传统描述的局限性。书中详细阐述了分子和原子电磁辐射的相互作用,以及其在光谱学中的潜力,特别地强调了激光作为现代光谱工具的重要性。书中许多例子和练习可以鼓励读者积极投身于将教科书中学到的知识应用到具体情况。
《平衡态统计物理学(第3版)》内容简介:During the last decade each of the authors has regularly taught a graduate or senior undergraduate course in statistical mechanics. During this same period, the renormalization group approach to critical phenomena, pioneered by K. G. Wilson, greatly altered our approach to condensed matter physics. Since its introduction in the context of phase transitions, the method has found application in many other areas of physics, such as many-body theory, chaos, the conductivity of disordered materials, and fractal structures. So pervasive is its influence that we feel that it now essential that graduate students be introduced at an early stage in their career to the concepts of scaling,