《欢乐数学》 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 通过所有这些有趣的例子,奥尔林老师关注的是让所有人认识到数学真正的核心:思维。他告诉孩子和所有人,学数学不是为了无聊地秀智商,而是可以学会用数学思维看待这个世界的运行,发现数学的魅力。 《欢乐数学之疯狂微积分》 微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题
《数学史(第三版)》由国际科学史研究院院士卡尔 B.博耶和哈佛大学数学与科学史博士尤塔 C.默茨巴赫所著,博耶和默茨巴赫按照时间、空间和学科演化三个维度,把数学几千年的发展浓缩为这本引人入胜的编年史。本书涵盖了数学发展的整个历程,可以对数学获得一个完整的认知。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但作者并没有忽视中国文明、印度文明和阿拉伯文明的贡献。毫无疑问,这本书是一部经典的关于数学及创造这门学科的 数学家们的单卷本历史著作。进入21世纪,数学高速发展,很多学科获得突破性的进展,本书的第三版同时做了更新,使得数学史更加完整。特别值得一提的是,本书视野开阔,并没有局限于西方视角,对于古代中国的数学发展也有较为详细的介
《欢乐数学》 兴趣引导,学会用数学的眼光看世界。 数学家眼中的数学是什么样的?A4纸的尺寸为什么是合理的?蚂蚁从高处掉下来为什么摔不死?从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 《欢乐数学之疯狂微积分》 原理入门,形象解读微积分思想精髓。 牛顿和莱布尼茨到底谁的贡献大?用黄瓜片和牙签就可以演示如何求圆的面积和周长?福尔摩斯因为不懂微积分而破不了案?你还会知道为何月亮不会坠落、什么是拐点和指数级增长 《欢乐数学之游戏大闯关》 玩即是学,用游戏锻炼数学思维。 终极井字棋、豆芽游戏、收税员、星系棋 70多款世界各国经典数学游戏,从逻辑到概率,从几何到拓扑,从组合到博弈论。只需纸、笔、几个硬币,学会1分钟,好玩1辈子。自己玩、亲子玩、同学玩,在游戏中轻松领会
与历史上的数学天才一起挑战头脑体操! 315个经典游戏开发大脑潜能,呈现数学之美。 在《迷人的数学》中,世界著名智力游戏专家、百万级畅销书作者伊凡 莫斯科维奇,用他标志性的精彩图解,呈现了315个经典烧脑游戏,其中不仅有许多历史上著名的数学谜题,也有他自己设计的独特游戏。 作者也巧妙地将从史前时代到21世纪的数学史融入这些游戏题中,让你在挑战谜题、开启大脑潜能的同时,了解数学前进的轨迹,领略数学的迷人魅力。这是一本有观点、有故事的数学益智书,献给所有热爱美感、惊奇、挑战、数学与游戏的人。
由数学大师和著名数学家亲自执笔撰写的这套数学小丛书是我国数学普及读物中的精品,曾激发一代青少年学习数学的兴趣。书中蕴涵的深刻而富有启发性的思想,促进了无数中学生在求学的道路上健康成长。
你可能还依稀记得在学校学过的数学:几何、代数、微积分,也可能你早就将这些知识抛在脑后。你可能精于计算,也可能罹患 数学恐惧症 ,千方百计地避免和数字打交道。无论你是哪种人,数千年来人类在数学上的非凡成就,都塑造和改变了你的世界和人生。 哥伦布发现新大陆得益于对三角形的理解,现代工业社会的诞生则始于对数字的掌握。数学为文艺复兴递上凿子,也促进了世界各地伟大建筑的诞生。数字是全人类的通用语言,语言不通的商人得以依靠数学建立互利贸易。数学也是燃料,助力人类实现从自由市场到登月的一系列抱负。 我们的生活方式、制度和基础设施均建立在数字之上。无论商业、住房、医药、政治、战争、农业,还是艺术、旅行、科技,几乎我们存在的每一个方面都以数学为基础被建立起来。人类的故事与数学密切交织,我们永远
9787115514943 数学也可以这样学 自然 空间和时间里的数学 59.00 9787115524560 数学也可以这样学 大自然中的几何学 59.00 《数学也可以这样学 自然 空间和时间里的数学》 我们是如此需要数学,以至于从远古时代的古巴比伦人开始就已经积累了一定的数学知识。不过,那时的数学还只是观察和经验所得,没有烦琐且枯燥的证明。经过漫长的发展,数学逐渐成为学习和研究现代科学技术必不可少的基本工具,但同时它也成为让不少学生十分苦恼的一门课程。本书汲取原始的经验,从生活出发,通过有趣的画图练习和模型制作等,向读者展示自然、空间以及时间里的数学知识。 一沙一世界,一花一天堂。 飘落的雪花是几何,太阳、月亮的运转是周期,叶子的节点是数列 换个方式看数学,你将发现自然的美丽及宇宙的秩序。 《数学也可以这样学 大自然中的几何学》 从基
《莫斯科智力游戏:359道数学趣味题》: 俄罗斯非常优秀、流行的智力游戏书。俄罗斯数学世界闻名,更是青少年数学教育启蒙的 领路者 。本书讲解359道经典数学趣味题,由易到难进阶,涉及代数、几何等数学各大板块,乐趣与难度统一,数学思想与解题技巧并存。本书的特点不在于刷题,而是用很多有趣的数学题让读者爱上数学,了解数学思想。 《神奇的数学:517个开发大脑潜能的数学谜题》(2本): 讲解517个开发大脑潜能的数学谜题,呈现数学之奇妙和数学的美。本书是英国知名智力游戏专家莫斯科维奇的好玩趣味数学书,内容包含几何、形状和多边形、逻辑和概率、拓扑学、科学、曲线和圆等,激发思考、开发大脑思维,展示了数学思维的无限可能。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神。 本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点。促进 新课标 倡导的 综合与实践 、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值。 本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考。
本书利用数学建模方法讨论了人类社会和自然界中的33个话题,既包括对经典话题的全新阐释,也包含对若干全新话题的原创研磨,不仅解答了大众对于数学的常见疑问: 数学有什么用? 更是以高中知识为主要工具、以数学建模为主要载体、以中学生能够理解的方式,展现了数学研究的基本过程和思维方式。33个话题充分体现了数学与生活的密切联系,讲解了数学建模如何有效地解决跨学科问题,如何为生活中的现实需求建立合理有效的模型,如何在设计制造、生物医学、机器学习,甚至在解决社会问题方面大显身手。作者力求将抽象且严密的数学阐述得通透而有趣,凸显数学的 形式之美 逻辑之妙 与 大道至简 。本书是为高中生、大学低年级本科生和爱好数学的大众读者开启的一场妙趣横生的数学思维之旅。
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙终极游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐完全预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
数学是理解和探索世界的工具,无论是学生、工程师还是科学家,都有能力也应该学会数学建模的方法和思想,学会如何用正确的思维方式搭建解答问题的阶梯。这本书旨在将数学作为一门语言、一种方法来引领读者学习数学。读者也将看到如何理解、传承并调用现代科学的知识、传统和范式。数学建模不仅是数学学习和研究的过程,更是我们认识世界、理解生活的方法之一,而在实践数学建模的过程中,我们将深刻感受到数学的趣味性、严谨性和解决问题的无穷威力,正如亨利?庞加莱的名言所讲,这将是一次面向心智的雅致统一的追求。
《有趣得让人睡不着的数学》 《哆啦A梦》中很巧妙地融入了爱因斯坦的理论?人类身上蕴含着对数?其实,我们的身边充满了数学原理。 数学是人类倾注心血凝结而成的智慧结晶,是*宝贵的知识财富。如此有趣的故事,却被教科书讲述得无聊至极,这实在是令人感到万分遗憾。 本书是关于作者选出的数学家、物理学家们的故事。它其实更是一本将年轻人领入数学世界的全明星阵容介绍:纳皮尔、牛顿、爱因斯坦、仁科芳雄、拉马努金 他们的人生和伟绩,曾经深深地触动了无数爱好数学的心灵。 数学这个故事,此时此刻也正产生新的发现,这是一个 Never Ending Story(永无结局的故事) 。 《有趣得让人睡不着的物理》 用细线把胡萝卜水平吊起,从细线的位置切断胡萝卜,两边的重量会发生什么变化? 这是一个关于杠杆与平衡的问题。 本书以猜谜的形
本套丛书由科普市场占有率领先的「未读 探索家」推出,集结品牌10年来10部经典数理科普作品,涵盖数学(《无言的宇宙》)、物理(《茶杯里的风暴》《看不见的光》)、化学(《元素的盛宴》《诗意的原子》)、天文学(《140亿年宇宙演化全史》《太空飞行课》)、材料学(《迷人的材料》《迷人的液体》)、科学思维(《发现的乐趣》)等诸多主题。 丛书作者均为来自世界大师级科普 明星 ,如诺贝尔物理学奖得主理查德 费曼,世界天体物理学明星、 卡尔 萨根 接班人尼尔 泰森,NASA资深宇航员汤姆 琼斯,把科学史写得像小说一般精彩的作家山姆 基恩等。每一册均科学与人文交融,知识与趣味并茂,是追求前沿新知、跨学科融合阅读的上佳选择。
这是享誉世界的智力游戏专家、设计师、艺术家伊凡 莫斯科维奇《迷人的数学》之后的全新力作,用他精心设计的300个精彩智力游戏,从不同角度帮助大家开发大脑潜能。内容分为三部分,分别是发展你的创造力,增强你的直觉和洞察力,提升你的决策力。每个游戏都用有趣的图片呈现,富有表现力和互动性,易于理解,让你在轻松愉快中锻炼数学思维,打造更强大脑!
《神奇的数学: 517 个开发大脑潜能的数学谜题》: 神奇的头脑体操!517个开发大脑潜能的数学谜题,呈现数学之奇妙和数学的美。在本书中,英国知名智力游戏专家、发明家、《大脑游戏天书》作者伊凡 莫斯科维奇,用他标志性的精彩图解,呈现了517个经典的数学迷题,这些数学迷题有12大类,分为激发思考的玩意、几何、点和线、图像和网络分布、曲线和图、形状和多边形、模式、分切、数字、逻辑和概率、拓扑学、科学,其中不仅有许多历史上有名的数学谜题,也有作者自己设计的独特游戏。 《很美很美的猜谜书》: 巴黎彩绘解谜手册!172道谜题 200幅中世纪风格插图,打破常规的猜谜逻辑,将栩栩如生的人物及时代背景赋予谜题中,如中世纪的国王、骑士、古堡 故事性与神秘感相结合,让你动手动脑玩不停。开发脑力、创造力;提升想象力、鉴赏
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为 绝赞的数学科普书 。 《数学女孩2:费马大定理》有许多巧思。每一章针对不同议题进行解说,再于末尾一章切入正题 费马大定理。作者巧妙地以每一章的概念作为拼图,拼出被称为 世纪谜题 的费马大定理的大概证明。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。 《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于**后一章切入正题 哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为 现代逻辑科学在哲学方面的三大成果 的哥德尔不完备定理的大概证明。整本书一气呵成,非常适合对数学感兴趣的初高中生以及
高斯被誉为 数学王子 ,是古往今来三大数学家之一,其实他的工作遍及物理学和天文学。在高斯拥有的较多传记中,本书被誉为是广泛和深入的、也是部高斯的完整传记。作者邓宁顿的老师是高斯的曾孙女,在她的鼓励下,采访了美国很多高斯的后代,具有很多手的资料。本书堪称一部展现高斯的家族、生活和工作的 百科全书 ,也是为19世纪欧洲科学史提供了一个视角。
《几何原本》是世界上著名、完整且流传广的数学著作,也是欧几里得有价值的传世著作。欧几里得在《几何原本》中系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系 几何学。而《几何原本》也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
《数理人文(1辑)》 数学是一门求真与求美的学科。数学对于解释大自然的纷繁现象具有基本的重要性, 兼具诗歌与散文的内在气质。 《数理人文》为数学家丘成桐先生主编的一系列科普读物,以数学、物理及工程为经,人文艺术为纬,旨在引导读者领略数理之美,感悟人文之魅力,启迪数理与人文相结合之思维,培养广泛的兴趣和独立思考能力。 《我的教育观(丘成桐作品)》 数学家、教育家丘成桐谈教育 直击中国教育痛点 不容错过的丘成桐学习法 走入丘成桐的内心世界,看一位数学家的志气与操守 本书是国际数学师丘成桐的作品,通过自己的成长经历和人生感悟,真诚给出面向未来的教育解决方案。 他从自己的家学渊源讲起,回顾了自己人生中的重要时刻。年幼时候条件艰苦,仍坚持追求学问;遇到数学难题寂寞坚持,终于攻克难关,登上数学高峰;
证明是数学思想中最重要,也是极具开拓性的特征之一。没有证明,就无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
《圆锥曲线论》将圆锥曲线的性质网罗殆尽,把综合几何发展到高水平,使后人在将近两千年的时间里都没有插足的余地,直到笛卡儿等人创立坐标几何、帕斯卡等人创立射影几何,才使得圆锥曲线论有所突破。天文学家开普勒、数学家莱布尼兹等亦从中受益。 《圆锥曲线论》集欧几里得、阿基米德等前人之大成,同时将该领域的研究向前推进了一大步,证明了三种圆锥曲线都可以由同一个圆锥体截取而得,并给出抛物线、椭圆、双曲线、正焦弦等名称。 阿波罗尼奥斯在《圆锥曲线论》中提出了坐标制思想,即以圆锥体底面直径作为横坐标,过顶点的垂线作为纵坐标,启发了后来坐标几何学的建立。 中译本根据1896 年由剑桥大学出版社出版的希思的注释改写英译本翻译而来。希思撰写的导言占全书近三分之一的篇幅,不仅详细梳理了古希腊关于圆锥曲线研究的
《DK数学百科(全彩)》内容简介:几千年来,人类一直处于探索、发现数学真理的征途中。数学试图为伟大的思想找寻简洁的解释方法,数学致力于发现特征并总结特征。从上古时代的莱因德纸草书、芝诺运动悖论,中世纪的二项式定理、斐波那契数列,文艺复兴时期的梅森素数、帕斯卡三角形,启蒙运动时期的欧拉数、哥德巴赫猜想,19世纪的贝塞尔函数、黎曼猜想、拓扑学,到近现代的无限猴子定理、模糊逻辑、四色定理,本书介绍了数学领域的诸多伟大思想,并用通俗易懂的语言进行阐释。让我们一起翻开这本书,品味数学的优雅与美丽。
《自然哲学之数学原理》是划时代的巨著,也是人类掌握的完整的、科学的宇宙论和科学理论体系。牛顿在本书中构建了一个宏伟的物理理论体系。这一理论体系很好地解释了当时已知的一切运动形式和现象。 《自然哲学之数学原理》的影响所及,遍布经典物理学的所有领域,并在其后300年里一再取得丰硕成果,它达到的理论高度前所未见的,其后也不多见。内容涉及天文、物理、生物、心理、政治、经济、法律与军事等领域,是过去、现在和将来人类认识世界与发现世界的重要理论基石。 爱因斯坦曾盛赞: 至今还没有可能用一个同样无所不包的统一概念,来替代牛顿的关于宇宙的统一概念。而要是没有牛顿的明晰的体系,我们到现在为止所取得的收获就会成为不可能。 《自然哲学之数学原理》(彩图珍藏版)增加了近300幅插图,帮助读者更
本丛书都是马丁 加德纳在《科学美国人》杂志上发表的 数学游戏 专栏文章的集子,共15册。除了介绍各种游戏或趣味问题外,作者还简述了它们的前因后果及发展过程,并提出一些问题,供有兴趣的读者研究。这套丛书中每一本书的每一个章节都是一个有趣的数学主题,每个主题都能让你赏玩好几天。