本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。 本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。而数据模型是构建应用系统的核心,是尽可能精准地表示业务运转的概念性框架。本书通过平实的语言,对数据模型及建模过程进行了深入浅出的介绍。全书内容分为5个部分,对数据建模简介、数据模型要素,概念、逻辑和物理数据模型、数据模型质量以及数据建模的进阶内容等方面进行讲解,全面细致地为读者解答与数据建模相关的知识点和疑问。除此之外,本书的zui后还对各类专业术语进行了细致的解释,方便读者参考。本书是一本经典的数据建模指南,非常适合对数据建模感兴趣的读者以及从事数据科学等相关工作的专业人士参考阅读。
本书是普通高等教育 十一五 *规划教材。本书全面系统地介绍了数据挖掘和知识发现领域的基本原理、研究方法、部分产品和工业标准。全书共15章,其中,第1章介绍数据分析技术的发展历程,KDD与数据挖掘的概念、对象、过程、方法、相关领域和应用范围。第2章介绍关联规则基本模型和Apriori等经典算法。第3章在介绍距离概念的基础上,讨论包括划分、层次、密度等聚类方法。第4章介绍ID3、CART等决策树算法。第5章介绍图方法实现贝叶斯分类。第6章介绍VC维、支持向量机。第7章介绍人工神经网络。第8章介绍近期热点技术 深度学习。第9章介绍不平衡数据学习。第10章讨论过拟合、模型选择、模型评估等内容。第11、12章是不确定性、模糊性方法,分别介绍粗糙集和模糊集。第13章是Web挖掘,介绍Web链接分析、推荐系统和社交网络挖掘。第14章介绍数据预处理和可视
本书系统地介绍了大数据相关理论知识,重点阐述了大数据的基本原理、技术、平台和不同领域的应用案例。全书共分为8章:第1章为引论,介绍大数据背景、应用价值和基本概念;第2章到第7章为技术章节,分别介绍大数据获取、大数据管理、大数据处理、大数据分析与学习、大数据隐私保护和大数据治理等内容;第8章介绍大数据在行业中的典型应用案例,反映了大数据在社会经济生活中的重要价值。每个章节均设有习题。 本书既可作为高等学校大数据相关专业的教学用书,也可作为大数据领域相关技术人员的参考用书。
数据湖仓是一个现代化的开放式架构,拥有当今热门的开源数据技术的广度和灵活性。本书从初学者的角度出发,通过对数据湖仓重要概念的剖析,对数据湖仓的相关知识进行深入浅出的讲解。全书共18章,对数据湖仓的基础知识、数据工程、业务价值、数据集成等方面进行深入探讨,同时展望数据架构的演化趋势,使读者能够领会数据湖仓的精髓,最终轻松、全面地管理数据湖仓项目。 本书适合数据架构师、业务人员和系统开发人员,以及对数据管理、数据分析感兴趣的读者阅读。
部分(第1~4章)为基础和背景部分,主要介绍数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的本质,以及实践中常见分析项目类型的介绍。第二部分(第6~13章)是数据分析挖掘中的具体技巧和案例分享部分,主要介绍实践中常见的分析挖掘技术的实用技巧,并对大量的实践案例进行了全程分享展示。第三部分(第5章,第14~19章)是有关数据分析师的责任、意识、思维的培养和提升的总结和探索,以及一些有效的项目质控制度和经典的方法论介绍。
在数字化浪潮中,大数据技术无处不在,包括互联网、体育、工业、医疗、交通等在内的社会各行各业,都融入了大数据的印迹,大数据对人类的社会生产和生活产生了重大而深远的影响。一早醒来,多篇你感兴趣的推送文章早已占领手机屏幕;走在路上,智能手环实时监测着你的健康信息;想点外卖,小程序优先推荐最符合你口味的商家;骑车出行,导航系统会提供实时路况和最优路线避开拥堵;晚上回家,收到工厂根据你的身材比例剪裁制作的个性化服装。这些现象的背后,其实都和大数据息息相关。大数据技术正在不断与人类生产生活进行交汇与融合,并潜移默化地改变着世界的运作模式。本教材将从大数据的基本概念讲起,追溯大数据发展历程,并围绕大家身边的大数据应用,包含大数据在互联网、体育、工业、医疗、交通等方面的应用,以及大数据共享
在云计算和互联网快速发展的驱动下,分布式技术领域产生了很多新的热点,分布式数据库就是其中之一。但是,目前对分布式数据库的理解和研究多停留在理论层面,本书以Greenplum分布式数据库为例,深入剖析分布式技术在工业级产品里的实现细节,为读者呈现从理论到实践的 全景图 。 本书共3篇:第1篇主要介绍分布式数据库基础理论,包括经典的CAP理论、一致性算法相关的理论、并发控制相关的理论等;第2篇具体介绍Greenplum数据库,从分布式事务、分布式计算和分布式存储3个方面,深入代码层级,讲述分布式理论在工业上的实现;第3篇是总结和展望,介绍云原生数据库和新技术带给Greenplum和数据库管理系统的机遇和挑战。 本书打破以理论介绍和架构介绍为主的思路,深入分析工业化的实现,实践性强。本书主要面向数据库领域的科研工作者
本书以LabVIEW 2017为基础,讲述LabVIEW图形化编程语言的原理,以及如何利用LabVIEW完成虚拟仪器设计。全书共15章,分为两篇,分别是基础知识篇(第1~13章)和实际应用篇(第14、15章)。第1章,综述虚拟仪器技术的构建思想和方法论。第2~7章,讲述LabVIEW图形化编程语言的基本原理以及编程方法,内容包括LabVIEW入门、基本数据类型、程序结构、复合数据类型、文件I/O、图形显示及其他技巧。第8~12章,阐述如何利用LabVIEW去控制仪器硬件以实现对被测信号的数据采集,内容包括选择专用的数据采集卡进行数据采集; 利用计算机自带的声卡实现数据采集; 利用摄像头完成图像采集; 仪器控制和控制单片机。第13章,讲述用LabVIEW实现仪器应用的若干算法和信号分析处理的相关知识。第14、15章,介绍利用LabVIEW完成有实际应用背景的两个虚拟仪器项目,分别是用LabVIEW构建函
本书与以往统计学中的概率论略有不同,添加了一些复杂数据类型的概率基础知识和模拟计算中的相关概率知识。具体安排如下所述。本书共分6章。第1章为概率与计数,基本内容是随机事件、概率空间、计数方法、概率的确定方法。第2章为条件概率,基本内容是条件概率与乘法公式、事件的独立性、全概率公式与贝叶斯公式。第3章为随机变量,基本内容是随机变量及其分布函数、随机变量的分类、二维随机向量、随机变量的独立性、随机变量函数的分布。第4章为常用的概率分布,基本内容是常用的离散型随机变量、常用的连续型随机变量、随机数的产生。第5章为随机变量的数字特征,基本内容是数学期望、方差和协方差、矩和矩母函数、条件期望。第6章为不等式和极限定理,基本内容是概率不等式、大数定律及其应用、中心极限定理。
内容介绍 本书从业务、数据、运营3个维度为电商的经营和决策提供了科学的方法论,是一部电商运营真经,真正做到了“业务中有数据,数据中有运营”。作者是资深的电商行业专家,从事电商数据分析与数据化运营10余年,本书是他在多个知名电商品牌操盘多个千万级项目的经验总结。 为了增强本书的趣味性和读者的角色代入感,本书采用了纪实和叙事的写作手法,书中虚拟了3个核心人物: ?Alex:临危受命、勇挑重担、运筹帷幄的BI部门经理(资深数据分析师)。 ?叶子:有电商行业从业经验但是不懂数据分析的业务员。 ?大白:从其他行业转型到电商行业的数据分析师。 全书有两条主线: ?暗线:叶子和大白在Alex的指导和帮助下成长为“精业务、精数据、精运营”的“三精”数据分析师的经历,这对数据分析师的职业规划和成长有重要借鉴意义。 ?明线:Alex将
MySQL作为一款开源的关系型数据库管理系统,有着强大的功能和广泛的应用领域,对促进信息化建设、推动数字经济发展起着重要的作用。本书全面介绍了MySQL数据库的技术原理、应用场景和开发实践,帮助读者掌握MySQL数据库的基本概念和高级特性,提升数据库设计与开发的能力。全书共11章,从数据库基础知识讲起,包括数据库概述、关系型数据库设计原则、SQL语言基础等内容,逐步深入介绍MySQL数据库的高级特性和应用技巧,如查询优化、事务管理、索引优化,延伸学习在数字经济发展情境下,数据库的发展趋势和应用等内容。此外,本书最后一章还通过两个综合应用项目将理论知识与实际应用结合在一起。 《MySQL数据库管理与应用》内容深入浅出,理论结合实际,可作为高等院校计算机、信息技术及相关专业数据库课程的教材,也可作为数据库初学者、软件
《统计分析:以R语言为工具》围绕经典的统计方法与 R 语言工具,从基本的统计描述分析方法出发,讲解了参数估计与假设检验、线性回归、逻辑回归、降维分析方法,每一章重点介绍一种经典方法或统计模型,对其基本定义、模型形式、统计方法的推导与解读等都给出了细致的讲解。此外,为了将理论与实践紧密结合,《统计分析:以R语言为工具》每一章均提供了不同业务场景下的R语言编程实例,帮助读者练习巩固。《统计分析:以R语言为工具》适合相关学科本科生及研究生,以及对数据分析及建模感兴趣的读者。
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
Power BI是微软推出的商业智能分析工具,它融合了数据准备、数据分析、数据可视化到报告协作分享的整个数据处理流程,帮助用户上手数据分析。 本书从实用的角度出发,结合作者本人的学习经验,从*基础的Power BI架构和操作界面开始,先通过一个小示例体验Power BI的强大和便捷,然后按照数据处理的流程和难易程度,分别介绍数据准备模块Power Query、数据建模以及Power BI数据分析语言DAX、可视化图表制作、丰富的交互方式和报表设计,*后用一个完整的分析示例带读者全面认识Power BI数据处理流程。 不论读者是学生、职场人士还是自由职业者,不论从事的领域是运营、财务、人力、管理还是电商,只要在平时的学习和工作中需要处理大量信息,分析各种数据,你就适合阅读本书学习Power BI,即使之前没有任何基础,它也可以帮你快速上手,提升自身竞争力。
本书是MySQL数据库初学者的入门教材,书中以通俗易懂的语言、丰富实用的案例,详细讲解了MySQL的开发和管理技术。 本书是新型活页式教材,包含8个项目20个任务,以及1个附录。8个项目分别是MySQL实训环境配置,MySQL数据类型,创建与管理数据库及数据表,MySQL查询,创建与管理索引及视图,事务、存储过程与触发器,安全管理与维护数据库,综合案例开发。附录中给出了课证融通1 X大数据分析与应用考证的相关内容。 本书是双高建设项目支撑材料之一,配有丰富的教学资源(包括教学微课视频、教学课件、课时安排、教案、任务测试模拟试卷及答案),以帮助读者更方便地学习和使用本书,有需要的读者,可扫描书中二维码观看,或登录出版社网站下载。 本书可作为各类院校及计算机教育培训机构的专用教材,也可作为数据库开发爱好者的参考用书,还可以作
本书围绕健康医疗大数据的理论与实践展开论述。全书共分为7章,第1章主要描述大数据的基础知识、通用技术以及技术发展趋势;第2章主要对健康医疗大数据的概念、特征、分类、主要应用技术、国内外发展现状以及应用需求进行系统阐述;第3章~第6章分别对临床大数据、精细化运营大数据、健康管理大数据以及基因检测大数据的应用实践案例进行详细论述;第7章对健康医疗大数据的未来发展趋势进行展望。本书是很多应用实例和经验的总结,案例丰富翔实,将理论与实际紧密结合,对互联网技术人员、健康医疗行业的从业人士,以及高等院校相关专业的学生均有很大帮助。
本书是《对比Excel,轻松学习Python 数据分析》的姊妹篇,同样采用对比的方法,降低学习门槛,提高学习效率。全书分为3 篇:第1 篇主要介绍数据分析的基础知识,包括数据分析的基本概念、为什么要进行数据分析及常规的数据分析流程,使读者对数据分析有一个整体的认识;第2 篇主要围绕数据分析的整个流程来介绍与SQL 语法相关的知识,包括如何选取一列数据、如何对数据进行分组运算等基础知识,还包括窗口函数等进阶知识;第3 篇主要介绍SQL 数据分析实战,都是一些比较常规的业务场景实战。 本书适合零基础学习 SQL 的人员,包括数据分析师、产品经理、数据运营人员、市场营销人员、应届毕业生等所有需要利用SQL 查询数据的人员。
本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
本书定位是HBase从入门到应用的简明教程,特色是以实战案例为主,内容系统全面,讲解深入浅出,操作步骤清晰明了。本书配套示例源码、PPT课件、开发环境、教学视频、习题及答案以及其他丰富的教学 资源。 本书共分为8章,内容包括NoSQL数据库、HBase体系架构、HBase的接口、MapReduce与HBase、HBase表设计、HBase和Hive、HBase深入剖析、论坛日志分析实战。 本书既适合HBase初学者、大数据分析与挖掘初学者阅读,也适合作为高等院校和培训机构人工智能、大数据等相关专业师生的教学参考书。
这是一部教你如何从0到1架构与实现一个企业级大数据平台的著作,是作者在大数据和系统架构领域超过20000小时的经验总结。作者从横向视角出发,手把手教你如何拉通Hadoop体系技术栈,以此搭建一个真实可用、安全可靠的大数据平台。通过阅读本书,一定能从本书的内容中找到灵感和思路来应对实际工作中面对的问题。
大数据审计已经成为目前审计领域研究与应用的热点。本书按照从常用电子数据审计方法到大数据审计方法的思路,不仅系统地分析了电子数据审计的理论知识(特别是大数据审计),还重点结合实际案例和具体操作,从审计数据采集、审计数据预处理和审计数据分析等电子数据审计的关键步骤出发,系统地分析了如何开展电子数据审计(特别是大数据审计)。附录中设计了9个实验模块(包括3个大数据审计实验模块),满足了开设实验课程的需要。 本书可作为高等院校审计、会计和信息管理等专业的教材,也可作为审计从业人员的专业培训教材和业务学习资料。