本书旨在向广大有志于投身芯片设计行业的人士及正在从事芯片设计的工程师普及芯片设计知识和工作方法,使其更加了解芯片行业的分工与动向。 本书共分9个章节,从多角度透视芯片设计,特别是数字芯片设计的流程、工具、设计方法、仿真方法等环节。凭借作者多年业内经验,针对IC新人关心的诸多问题,为其提供了提升个人能力,选择职业方向的具体指导。本书第1章是对IC设计行业的整体概述,并解答了IC新人普遍关心的若干问题。第2章和第3章分别对数字IC的设计方法和仿真验证方法进行了详细阐述,力图介绍实用、规范的设计和仿真方法,避免了Verilog语法书中简单的语法堆砌及填鸭式的灌输。第4章是在前两章的基础上,通过实例进一步阐述设计方法中的精髓。第5章详细介绍了作为当今数字芯片主流的SoC芯片架构和设计方法,并对比了非SoC架构的设计,
《数字化生存》描绘了数字科技为我们的生活、工作、教育和娱乐带来的各种冲击和其中值得深思的问题,是跨入数字化新世界的*指南。英文版曾高居《纽约时报》畅销书排行榜。 信息的DNA 正在迅速取代原子而成为人类生活中的基本交换物。尼葛洛庞帝向我们展示出这一变化的巨大影响。电视机与计算机屏幕的差别变得只是大小不同而已。从前所说的 大众 传媒正演变成个人化的双向交流。信息不再被 推给 消费者,相反,人们或他们的数字勤务员将把他们所需要的信息 拿过来 并参与到创造它们的活动中。信息技术的革命将把受制于键盘和显示器的计算机解放出来,使之成为我们能够与之交谈,与之一道旅行,能够抚摸甚至能够穿戴的对象。这些发展将变革我们的学习方式、工作方式、娱乐方式 一句话,我们的生活方式。犀利的见解使尼葛洛庞帝成为《连线》
数据分析是现在不仅在互联网行业同时也在基础行业中必不可缺的运营手段,是业务提升效率、增强收益的有效方法。 本书的前8个章节精选提炼了多种数据分析中重要方法,包括ROI分析、数据标签和评分、用户生命周期、因果推断、可解释模型、PSM理论、ABtest、时序分析等,并通过更清晰、简单的方式向读者全方位的展示数据分析在以下诸多原理上的阐释,并且针对每种方法都提供了充足的生活和业务中的前沿案例作为辅助讲解,帮助读者更好的理解数据分析在传统行业、互联网行业及各类新兴行业的实际应用,同时也能更快的运用在实际工作和生活中,所以通过阅读前8个章节,读者可以系统的学习数据分析的理知识,拥有数据化思维,为读者能够在数据分析行业中不断深耕打下良好的理论基础并将数据分析能力逐步应用于实际的工作和生活中,成为一名合格的
一本书如果没有作者自己的观点,而只是知识的堆叠,那么这类书是没有太大价值的。尤其在当前网络发达的时代,几乎任何概念和知识点都可以从网络上查到。但是有一点你很难查到,那就是统计分析的思路和观点。比如,你可以很容易地在网上查到什么是线性回归,但你却查不到怎么 做 线性回归分析,在你遇到实际数据时仍然不知道如何分析。在《白话统计》中,你可以获得这些思路和观点。尽管这些观点未必是所有人都认可的,但根据笔者多年的分析经验,它们在实践中通常是奏效的。《白话统计》凝结了作者十多年来对统计分析的理解,对各种方法的介绍采用全新的理念和思路,不再是介绍方法本身,而是试图将各种方法之间的联系阐述清楚;不再是介绍方法如何计算出结果,而是尽量说明方法背后的思想。当然,本书同时提供了如何实现结果的软件(
内容简介商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项技能。 作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。 本书分为6 篇,共17 章,其中第1 篇是概念篇,讲述商业分析的基本概念;第2 篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3 篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4 篇是高阶篇,讲述如何应对复杂的商业难题;第5 篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6 篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。 本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
本书介绍数据分析的统计基础、种类划分,并列举大量实例以说明数据分析方法和算法。内容主要分为4部分,第1部分为第1章,介绍一些概念,简单描述数据分析方法和一些实例; 第2部分包括第2~7 章,介绍描述性分析和数据预处理的主要方法,包括描述统计、多元描述分析、聚类以及频繁模式挖掘等;第3部分包括第8~12章,介绍预测性分析的主要方法,其中包括多种回归算法、二元回归、分类的性能测量以及基于概率和距离测量的方法,以及决策树、人工神经网络和支持向量机等较为先进的方法; 第4部分为第13章,利用描述和预测这两种方法,简单讨论文本、网页以及社交媒体的应用。
本书以实战案例为主线,以函数理论基础为核心,引导读者从整体上理解Power Query的灵活应用,从实例中获得解决问题的思路和灵感。 本书共24章,分为原理篇、实战篇、函数篇、扩展篇,详细讲解了PQ的原理和函数应用。原理篇详细讲述三大数据结构(简称为三大容器)的原理和M函数的传参,实战篇通过案例讲函数,函数篇按照类名讲函数,扩展篇讲解自定义函数等灵活的应用。 本书的特点是,举一反三把逻辑原理讲透、用类比法强化记忆、案例配套在线视频。不管使用Excel还是PQ处理数据,不仅要求快,更要准确,本书列举了许多数据处理的思维和细节,提醒读者避坑。 本书面向会PQ界面操作的用户,作为从基础到中级水平的进阶参考书。
本书介绍了柴油发电机组的分类、组成和工作原理,分析了柴油发电机组的功率标定和技术指标, 重点讨论了不同性质负载对柴油发电机组带载能力的影响,详细介绍了柴油发电机组供电方案的电源架 构和运行方式以及柴油发电机组的运维保养方法。此外,还介绍了机房安装的柴油发电机组和集装箱式 柴油发电机组的设计、安装的相关知识。 本书力求理论性和实践性相结合,书中所列的柴油发电机系统的供电方案及运维保养方法对当前主 流的数据中心柴油发电机系统普遍适用。本书是数据中心柴油发电机系统运维工作流程的指导性教材, 相信阅读本书一定会对数据中心柴油发电机系统运维管理从业人员大有裨益。
本书基于社会学领域学生和学者的需求,将统计学的理论概念和详细的技术指导有机结合起来,通过众多来自社会学不同领域的有趣示例来呈现丰富的统计方法和模型,鼓励读者在了解理论的同时学习应用Stata软件来实现研究的目的。本书除了用5个章节渐进式地详细阐述线性回归模型之外,还进一步涵盖logistic回归、多层次分析、面板数据分析、探索性因子分析、结构方程模型和验证性因子分析等内容。本书通过配套网站提供各章配套的测试题、视频、数据集和Stata代码,方便读者学习并检查学习效果。 本书可作为社会学领域本科生或研究生定量研究课程的教材或参考书,也可作为想要学习应用Stata软件进行定量研究的社会学者的参考书。
本书系统地介绍分数阶微积分学领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法; 提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架; 提出并实现了基于框图的分数阶隐式微分方程、延迟微分方程与分数阶微分方程边值问题的通用求解方法。本书所有知识点均配有高质量的MATLAB 代码与Simulink 模型,有助于读者更好地理解知识点的内涵,更重要的是,读者可以使用这些代码创造性地解决相关问题。 本书可供数学与应用科学领域的高年级本科生、研究生与工程师系统学习分数阶微积分学理论及其计算方法,并用其解决实际应用问题。
本书系统的阐释Power Pivot for Excel及Power BI中DAX语言的应用。本书是基于笔者多年的DAX学习与使用经验的基础上所采用的一种全新布局与讲解方式,整书依据读者易于理解的方式,由浅入深进行循序渐进式的讲解。本书要探索的重点是,如何利用简捷的办法,让读者在一至两个月之内轻松、系统、全面地掌握DAX语言。 全书共分为5篇:篇为入门篇(第1章和第2章),第二篇为基础篇(第3~5章),第三篇为强化篇(第6章和第7章),第四篇为进阶篇(第8~10章), 第五篇为案例篇(第11章)。书中主要内容包括DAX基础、表的基础应用、查询表、计算列、迭代行、度量值、时间智能、Power BI简介、筛选调节、DAX高阶、综合案例。 本书是为非计算机专业及非统计学专业想快速掌握DAX数据分析及商业智能而准备的。另外,本书也适用于财务、人事行政、电商客服、质量统计等与数
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
● 如何使用R语言进行高级数据分析,涉及的技术包括广义线性模型、广义可加模型、混合效应模型、机器学习、并行处理 ● 如何使用R语言的数据可视化技术实现回归,如线性回归和高级回归,并了解回归样条和可加模型 ● 如何使用R语言实现机器学习,包含平行处理、降维、特征选取和分类 ● 如何使用R语言的多重插补技术解决数据缺失问题 ● 如何使用广义线性可加模型实现普通量、二值量和计次量的输出,如何使用自采样法(Bootstrapping)分析不确定性 ● 学习如何对个体内的变异性进行建模,进而捕捉个体在方法以及时间稳定性上的差异
Power BI 自 2015 年 7 月发布后,极大地改变了商业智能市场的格局,连续多年被评为商业智能产品的领导者。本书集合了 20 多套运用 Power BI 的 DAX 引擎来处理、分析常见商业问题的即用型解决方案。 DAX 设计模式是由 BI 领域专家 阿尔贝托 法拉里和马尔科 鲁索总结并提出的。本书同时使用 Power BI 和 Excel 作为工具*行编写,并对应用模式*行了大幅更新,内容涵盖了时间智能、分组、ABC 分类、客户分析、购物篮分析等常用模式。本书所包含的每一套设计模式都经过不断的实践,被提炼为易用的数据模型和优雅的 DAX 公式。 本书适合 Excel 高级用户、商业智能分析人员、使用 DAX 和微软分析工具的专业人士阅读。
本书以敏捷分析工具Tableau为基础,部分章节辅以SQL讲解,系统介绍了数据可视化分析的体系和方法,内容涵盖问题分析方法、数据合并和建模、可视化图形的选择和构建、多种交互方式及其组合、仪表板设计与高级交互、基本计算和高级计算等。 本书以Tableau Desktop的应用为中心,借工具讲解原理,以原理深化工具应用,并由点及面地介绍了业务分析的思考和原理,特别是提出了实践性的"业务 数据 分析 层次框架,并以三类"详细级别 的概念贯通数据模型、高级筛选和高级计算三大主题。 本书重点介绍工具应用背后的思考方式和原理,帮助读者建立"详细级别 的思考框架,举一反三,从而实现多维、结构化分析。
数字化转型是企业在数字经济时代面对的重大战略选择,其本质是通过有效地使用数据资源对业务进行全面的升级和优化,提高企业的综合产业竞争力。本书将数据科学作为出发点,结合大数据、人工智能技术,以数据分析的方法和理论为观察视角,介绍了企业数字化转型的核心知识概念及主要的应用实践策略。 本书共8章,分为数据科学原理、数据科学技术、数字化业务实践,以及数字化产业目标四个主要部分。 数据科学原理部分(第2章)主要讨论数据要素的核心价值体系及数据科学的基本理论范畴;数据科学技术部分(第3~6章)主要介绍数据获取及预处理方法、数据规律挖掘方法、数据建模方法,以及数据相关技术系统的建设方法;数字化业务实践部分(第7~8章)讨论企业数字化中的实施落地问题、数字化人才和组织架构,以及不同行业数字化应用的典型场
本书系统论述了openGauss数据库理论、技术及应用。本书共11章,首先介绍数据库发展历史,包括传统的 网状数据库、层次数据库、关系数据库、NoSQL数据库、NewSQL数据库、云数据库、多模数据库、分布式数据库 等。其次介绍结构化查询语言(SQL)、SQL语法、存储过程、触发器、游标、数据库设计规范和E-R 模型等数据库 基础知识。再次介绍数据库未来发展趋势,包括新硬件、不同部署形态、新应用对数据库的影响。*后重点介绍 openGauss的核心技术,包括openGauss的核心架构、面向鲲鹏和?N腾等新硬件的优化技术、SQL引擎、执行器技 术、数据库存储技术、数据库事务机制、数据库安全、数据库自治技术等。为方便读者掌握数据库教学内容,本书 每章都提供了小结和习题(含答案)。 通过阅读本书,读者可以深入了解数据库的发展历史与未来趋势、数据库系统架构、鲲鹏和?N腾优化技术
本书介绍了数据链的基本概念、发展历程和趋势,重点分析了Link-4、Link-11、Link-16和Link-22数据链的系统组成、工作模式、技术特点等内容,并以Link-16数据链为重点,全面阐述了该数据链的信道共享机制、时间同步技术、传输消息类型、封装结构、信号波形等内容,给出了多网、导航、中继、距离扩展等功能实现方法;以数据链关键技术为主线,详细论述了数据链的消息格式、信息传输、网络协议、通信安全等方面相关知识,剖析了数据链的本质。
本书采用 问题描述 解决方案 模式,通过500个案例介绍了使用Pandas进行数据分析和数据处理的技术亮点。全书共分为8章,主要案例包括:读写CSV、Excel、JSON、HTML等格式的数据;根据行标签、列名和行列数字索引筛选和修改数据,使用各种函数根据数据大小、日期范围、正则表达式、lambda表达式、文本类型等多种条件筛选数据;统计NaN(缺失值)的数量、占比,根据规则填充和删除NaN;在DataFrame中增、删、查、改行列数据,计算各种行差、列差、极差以及直接对两个DataFrame进行加、减、乘、除运算和比较差异;将宽表和长表相互转换,创建交叉表和各种透视表;对数据分组结果进行求和、累加、求平均值、求极差、求占比、排序、筛选、重采样等多种形式的分析,将分组数据导出为Excel文件。本书还附赠36个数据可视化案例,如根据指定的条件设置行列数据的颜色和
文本数据挖掘是通过机器学习、自然语言处理和推理等相关技术或方法,理解、分析和挖掘文本的内 容,从而完成信息抽取、关系发现、热点预测、文本分类和自动摘要等具体任务的信息处理技术。《文本数据挖掘(第2版)》主 要介绍与文本数据挖掘有关的基本概念、理论模型和实现算法,包括数据预处理、文本表示、文本分类、文本聚类、主题模型、情感分析与观点挖掘、话题检测与跟踪、信息抽取以及文本自动摘要等,后通过 具体实例展示相关技术在实际应用中的使用方法。《文本数据挖掘(第2版)》书可作为高等院校计算机、自动化、网络安全、大数据分析等专业,以及利用到文本信息处理的交 叉学科(如金融财经、社会人文、生物医药等)的高年级本科生或研究生从事相关研究的入门参考书,也可供相关技术研发人员阅读和参考。
在大数据时代, 数据 是一种宝贵的资源,甚至可以说是战略性资源,它蕴含着无尽的能量,展示出超然的魅力。随着大数据时代的到来,数据库技术在研究、管理和应用数据领域成为备受瞩目的核心技术。在这种背景下,数据库技术已成为人们需要学习和掌握的一种基本知识和本领。 本书以华为公司自主研发的GaussDB(for MySQL)数据库管理系统为背景,全面讲述了数据库原理和技术,以及基于GaussDB(for MySQL)进行数据库应用系统开发的基本技能和方法。 本书以培养计算思维能力为目标,由 基础理论篇 技术篇 系统应用篇 三篇组成,以数据库应用系统案例为主线贯穿全书,讲述了数据库基础理论、数据库操作和管理的基本技能以及数据库应用系统开发的一般方法。 特别地,它以目前国产新型云数据库为背景,这在国内极为少见,对于增强科技自信、民族自信,促进
本书主要结合作者多年对企业信息化规划、SOA、大数据以及云计算等方面的技术研究以及平台建设实践,以 平台 应用 和SOA服务化核心理念为指导思想,围绕如何降低企业IT建设成本、提升IT资源利用率、打破企业烟囱式系统建设模式、提升系统建设规范等核心诉求,主要阐述了企业私有云平台建设的总体框架、平台规划、架构设计、平台治理管控等核心内容。同时基于国内大型企业一线项目实践,总结提炼了企业私有云平台建设的核心方法论、标准规范和建设流程,为企业进行私有云平台建设提供可借鉴、可参考的一整套指导方法与思路。
本书结合openGauss数据库原理,讲述openGauss数据库实战相关内容,并设计多种实验帮助用户理 解并使用openGauss数据库。本书首先介绍数据库的基本概念、安装部署、开发调试,并设计实验帮助用 户熟悉这一系列操作。接着介绍数据库设计、查询优化、维护、数据库备份与恢复及导入与导出、存储引 擎、事务控制和数据库安全等。本书理论与实践并重,读者通过阅读本书并进行实践,可以较好地掌握 openGauss数据库。 本书面向的读者主要是高校学生及使用openGauss数据库的工程师。
本书内容包括概论、线性表、栈和队列、串、数组和稀疏矩阵、树和二叉树、图、查找和排序,附录中给出书中部分算法清单、全国计算机专业数据结构联考大纲、部分练习题的参考答案
本书主要介绍基于GraphPad Prism 9 的学术图表绘制方法。本书以软件所定义的8 种数据表为纲,按照 数据录入 数据分析 图表生成与美化 的顺序,结合科研实例,使用t 检验、方差分析、生存分析和主成分分析等相关统计分析方法,介绍了散点图、气泡图、柱状图、线图、饼图、面积图等常见学术图表的绘制和美化方法。同时本书提炼了学术图表绘制的一般流程、配色方法及GraphPad Prism 绘图的进阶技巧,兼顾学术图表绘制的实用性和美观性,适用于需要绘制学术图表的高校学生和科研人员。