《数据分析思维:分析方法和业务知识》分为两大部分: 方法篇 和 实战篇 。 方法篇 介绍了数据分析中常用的业务指标、分析方法以及如何用数据分析解决问题的步骤。 实战篇 讲解了如何应用*篇的方法来解决工作中的问题,分享十二个行业(国内电商、跨境电商、金融信贷、金融第三方支付、家政、旅游、在线教育、运营商、内容、房产、汽车、零售)的业务知识,以及该行业内用数据分析解决问题的实例。每个行业都包括业务模式、业务指标、案例分析三方面的内容。 通过本书的学习,你会熟悉数据分析的方法,并将其灵活应用在自己所处的行业中。
本书第1版于1983年出版,至今已修订至第6版。教材出版近40年来为全国数百所高校采用。本书三次荣获优秀教材奖(1988年、2002年、2021年)。相应课程先后入选北京市精品课程、精品课程、精品资源共享课程、精品在线开放课程和一流本科课程。 本书系统全面地阐述了数据库系统的基础理论、基本技术和基本方法。全书分为4篇18章。篇基础篇,包括绪论、关系数据模型、关系数据库标准语言SQL、数据库安全性和数据库完整性,共5章。第二篇设计与应用开发篇,包括关系数据理论、数据库设计和数据库编程,共3章。第三篇系统篇,包括关系数据库存储管理、关系查询处理和查询优化、数据库恢复技术、并发控制和数据库管理系统概述,共5章。第四篇新技术篇,包括数据库发展概述、大数据管理系统、数据仓库与联机分析处理、内存数据库系统、区块链与数据库,共
本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。 本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。
伴随人类社会数字化进程的深入,数据正不断渗透于日常的生活、生产、分配、流通、消费等各个环节,对人类社会的影响日益凸显。数据已成为继土地、劳动力、资本、技术之后的第五大生产要素,对其他生产要素的整合能力也使其成为既有要素中比较重要的和难以替代的关键要素,并成为值得重点讨论的时代性议题与理解数字时代的基本入手点。 对数据要素的理解涉及多学科、多视野,本书从与数据要素关系较为密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。
《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》详细介绍了 SPSS 28 在数据统计分析方面的使用方法 和应用技巧,它是一本 SPSS 基础教程,同时包含了大量的 SPSS 视频教程。 《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》全书共 20 章,内容包括 SPSS 28 概述、初识 SPSS 28、SPSS 数据结构、数据管理、数据分类、数据清洗和数据加工、数据计算、数据分析图表、数据分布的特征分析、参数检验、非参数检验、均值分析、单因素方差分析、多因素方差分析、相关性分析、列联表相关性分析、回归分析、聚类分析、判别分析和电力中断数据分析实例等知识。通过丰富的实例,详细介绍了 SPSS 数据统计分析的全方位知识。本书在讲解过程中理论联系实际,并配有详细的操作步骤,图文对应,可以提高读者的动手能力,并加深对知识点的理解。 《中文版 SPSS 28
目前,大数据成为人们耳熟能详的名词。在人工智能、大数据时代,数据处理、数据分析成为非常重要的工作,但是数据存储在哪里,数据是怎么存储的,数据库的工作原理是什么,面对大量数据,我们应该如何操作,很多人可能并不清楚。本书就用通俗易懂的文字,结合直观清晰的插图,对这些问题的关键技术 数据库相关知识点进行了详细解说。具体内容包括数据库的基础知识 理解数据库的基本概念、数据的存储方式 关系型数据库的特征、操作数据库 SQL的使用方法、管理数据 避免非法数据的功能、引入数据库 数据库的结构与表的设计、运用数据库 旨在安全运用、用于保护数据库的基础知识 故障恢复与安全措施、活用数据库 在应用程序中使用数据库等。本书适合所有对数据、数据库感兴趣的读者学习。
数据分析是现在不仅在互联网行业同时也在基础行业中必不可缺的运营手段,是业务提升效率、增强收益的有效方法。 本书的前8个章节精选提炼了多种数据分析中重要方法,包括ROI分析、数据标签和评分、用户生命周期、因果推断、可解释模型、PSM理论、ABtest、时序分析等,并通过更清晰、简单的方式向读者全方位的展示数据分析在以下诸多原理上的阐释,并且针对每种方法都提供了充足的生活和业务中的前沿案例作为辅助讲解,帮助读者更好的理解数据分析在传统行业、互联网行业及各类新兴行业的实际应用,同时也能更快的运用在实际工作和生活中,所以通过阅读前8个章节,读者可以系统的学习数据分析的理知识,拥有数据化思维,为读者能够在数据分析行业中不断深耕打下良好的理论基础并将数据分析能力逐步应用于实际的工作和生活中,成为一名合格的
这是一本需要 动手实践 的图书,通过带领大家从零构建一款分布式向量数据库,让大家透彻理解向量数据库的技术原理和实现细节。 本书共分为三大部分,内容由浅入深、循序渐进。 第一部分 认识向量数据库 (第1~3章)是基础篇,介绍向量数据库的基础知识,涵盖向量及数据库的基本概念、向量数据库的发展历程和核心功能。 第二部分 构建向量数据库 (第4~6章)是核心篇,详细介绍如何从零开始构建并优化向量数据库,巨细靡遗地展示数据库内核的技术实现细节并辅以代码示例、技术架构图等,旨在让大家真正实现动手写向量数据库。 第三部分 向量数据库的实践与展望 (第7~8章)是结束篇,通过实践案例展示向量数据库在AI应用中的使用方法,并尝试勾勒向量数据库的未来。 本书面向数据库开发人员、数据库管理员、数据库架构师等数据库从业人
在大数据爆发的短短10多年中,NoSQL成为处理大数据必须掌握的热门核心技术之一。《NoSQL数据库入门与实践(基于MongoDB、Redis)(第2版)》正是在这种背景下应运而生的,本书结合MongoDB、Redis和测试工具等全面介绍NoSQL数据库技术,是一本NoSQL数据库入门图书,也是初学者了解NoSQL 技术全貌的图书。全书包括3部分,其中NoSQL基础部分包括初识NoSQL、TRDB与NoSQL的技术比较、NoSQL数据存储模式;NoSQL实践部分(电商大数据)分别介绍了文档数据库MongoDB和键值数据库Redis 入门及提高知识,并通过两个电商平台综合案例详细介绍了MongoDB和Redis在实现不同业务(如日志存储、商品评价、订单信息记录、点击量存储、商品推荐、购物车、记录浏览商品行为等)功能模块开发过程中的具体应用;NoSQL提高部分(电商大数据〉介绍了大数据环境下MongoDB和Redis 在操作速度和数据存储方面的优化方法
本书以 实战、实用、实效 为原则,充分考虑智慧公安、智慧交通、智慧金融、智慧城市等用户的大数据应用痛点,紧贴大数据实践的业务场景,汇集数据分析模型全生命 周期的关键应用技术,包括数据准备、工作表管理、可视化图表创建、数据大屏制作、数据模型创建和自定义算子设计等内容。 本书内容通俗易懂,案例丰富,图文并茂,同时配有教学视频和建模平台,适合初级、中级数据分析师和广大数据分析爱好者参考学习。通过本书,读者无须具备计算机、 软件开发等专业知识背景,即可熟练掌握大数据分析建模的基本方法和技巧。
本书介绍了柴油发电机组的分类、组成和工作原理,分析了柴油发电机组的功率标定和技术指标, 重点讨论了不同性质负载对柴油发电机组带载能力的影响,详细介绍了柴油发电机组供电方案的电源架 构和运行方式以及柴油发电机组的运维保养方法。此外,还介绍了机房安装的柴油发电机组和集装箱式 柴油发电机组的设计、安装的相关知识。 本书力求理论性和实践性相结合,书中所列的柴油发电机系统的供电方案及运维保养方法对当前主 流的数据中心柴油发电机系统普遍适用。本书是数据中心柴油发电机系统运维工作流程的指导性教材, 相信阅读本书一定会对数据中心柴油发电机系统运维管理从业人员大有裨益。
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。而数据模型是构建应用系统的核心,是尽可能精准地表示业务运转的概念性框架。本书通过平实的语言,对数据模型及建模过程进行了深入浅出的介绍。全书内容分为5个部分,对数据建模简介、数据模型要素,概念、逻辑和物理数据模型、数据模型质量以及数据建模的进阶内容等方面进行讲解,全面细致地为读者解答与数据建模相关的知识点和疑问。除此之外,本书的zui后还对各类专业术语进行了细致的解释,方便读者参考。本书是一本经典的数据建模指南,非常适合对数据建模感兴趣的读者以及从事数据科学等相关工作的专业人士参考阅读。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
Apache Flink项目的资深贡献者Fabian Hueske和Vasiliki Kalavri展示了如何使用Flink DataStream API实现可伸缩的流式应用,以及怎样在业务环境中持续运行和维护这些应用。流处理的理想应用场景有很多,包括低延迟ETL、流式分析、实时仪表盘以及欺诈检测、异常检测和报警。你可以在任意类型的持续数据(包括用户交互、金融交易和物联网等数据)生成后,立即对它们进行处理。本书主要内容包括: 了解有关分布式状态化流处理的概念和挑战。 探索Flink的系统架构,包括事件时间处理模式和容错模型。 理解DataStream API的基础知识和构成要素,包括基于时间和有状态的算子。 以精确一次的一致性读写外部系统。 部署和配置Flink集群。 对持续运行的流式应用进行运维。
网络图的表征能力异常强大,它能够对事物之间任意类型的相互作用关系进行建模,因此网络图数据在生物信息、交通网络、科研合作、万维网和社交网络等领域的一系列实际场景中随处可见。图数据挖掘用于从图数据中发现有用的信息和知识。然而,网络中节点和链路及其半结构形式的复杂性在各种计算任务,如节点分类、链路预测和图分类等方面提出了挑战。在这一背景下,研究人员最近提出了各种前沿的图机器学习算法,包括图嵌入和图神经网络,显著地提升了图数据挖掘的性能。 《图数据挖掘:算法、安全与应用》提供了对图数据挖掘方法的**评述,在此基础上引申出一个前沿课题,即图数据挖掘的安全性问题,并介绍了一系列检测方法来识别图数据中的对抗样本。此外,它向读者介绍了图数据增强和子图网络以进一步增强模型,即提高其准确性和鲁
本书系统讲述数据仓库的基本概念、基本原理以及建立数据仓库的方法和过程。主要内容包括:决策支持系统的发展、数据仓库环境结构、数据仓库设计、数据仓库粒度划分、数据仓库技术、分布式数据仓库、ElS系统和数据仓库的关系,外部和非结构化数据与数据仓库的关系、数据装载问题、数据仓库与Web、ERP与数据仓库以及数据仓库设计的复查要目。 本书是数据仓库之父撰写的关于数据仓库的 权威著作,既可作为相关专业的研究生教材,也是数据仓库的研究、开发和管理人员的指南。
广博的网络空间里,藏品以数字化的形态储存,检索、提取、分析、欣赏,物与人之间 零距离 ;多种类的服务场景里,博物馆体验走向定制化,打破虚拟与现实的边界,公众在展厅内外开启自由多样的智识旅程。在智慧博物馆,千里在俄顷,三江坐超忽。 历经信息化、数字化时代,博物馆已走上智慧化实践的征程。利用物联网、大数据、云计算和移动通信等新技术,整合博物馆信息资源,重建信息交流通道,实现智慧服务、智慧保护、智慧管理。通过感知、互通和互联,智慧博物馆更加突出 以人为中心 。 本书辨析智慧博物馆公众服务的定义、特征和内容,构建智慧博物馆公众服务的系统框架;分析面向公众服务的数据资源建设与管理,阐述系统感知、运行和发展的过程;构建绩效评价指标体系和完善机制保障,从内外部确保智慧博物馆公众服务的平稳有效运
《人人会建的大数据可视化大屏》重点阐述数据可视化的重要性、基本概念、主要应用和意义,通过需求梳理、数据准备、屏幕测算、合理布局、图表颜色等方面的设计,呈现数据分析的关键指标,增强数据的可读性。同时,以海致科技集团自主研发的伏羲数据可视化平台应用为例,通俗易懂地介绍伏羲数据可视化大屏设计思路、组件功能和制作方法,举例说明公安、金融、交通、能源、司法等领域的数据大屏应用。 《人人会建的大数据可视化大屏》适于各行各业大数据可视化工程师、数据分析人员、大数据爱好者、人工智能从业人员、计算机软件应用专业的在读大学生等参阅。
本书以信息交互设计为研究对象,思考在设计学视野下的信息交互设计理论本体并进行 四维一体 的模型建构,比较系统的梳理信息交互设计的发展历程,并着重对发展趋势进行展望。本书以信息交互设计为研究目标进行了系统性、逻辑性的设计理论研究,力求综合、深刻地把握与探索信息交互设计的本体与趋势,并对今后的信息交互设计实践活动提供一定参考与启示。
大数据时代,掌握必要的数据分析能力,将大大提升工作效率和自身竞争力。Tableau是一款数据分析及可视化工具,本书将详细讲解利用Tableau进行数据分析及展示的相关知识。书中主要内容包括:Tableau数据分析概述、连接数据源、Tableau基础操作、数据可视化、统计分析、仪表板和故事;Tableau Prep数据清洗、处理、角色和参数,Tableau Prep的高级应用,数据清洗和分析案例,以及Tableau在线服务器等。本书内容丰富,采用全彩印刷,配套视频讲解,结合随书附赠的素材边看边学边练,能够大大提高学习效率,迅速掌握Tableau数据分析技能并用于实践。本书适合数据分析初学者、初级数据分析师、数据库技术人员、市场营销人员、产品经理等自学使用。同时,本书也可用作职业院校、培训机构相关专业的教材及参考书。
本书从新时代商业环境出发,紧随市场热点,如分布式自治组织(distributed autonomous organization,DAO)、非同质化通证(non-fungible token,NFT)、元宇宙、Web 3.0 、资产 数字化、反垄断、要素市场化配置等,以企业数字化转型为核心,以区块链等数字化技术 为基本点,以场景为基本面,勾勒了数字化时代分布式商业演化的新趋势,以及其对企业 经营管理的影响,提出了数字化时代企业数字化转型的新策略和分布式经营管理的低成 本、高效率发展方案。 本书全面分析了分布式商业产生的背景及其本质内涵,认为分布式商业是未来商业演 化的必然趋势。分布式商业生态战略不但是未来企业生存的基本战略,而且是元宇宙商业 生态建设的底层逻辑,并将Web 3.0 、DAO、NFT、元宇宙等新兴事物融入分布式商业生 态体系中,深度解读了数字化时代的新商业逻辑和战略思维。同
在数据湖仓的所有新增要素中,排名的就是可以利于数据分析和机器学习所用的分析基础设施。分析基础设施包括一众大家广为熟悉的东西,当然也包括一些可能对大家还有些陌生或略带新鲜感的概念。比如包括:元数据、数据血缘、 数据体量的度量 、数据创建的历史记录、数据转换描述。 数据湖仓的第二个新增要素,是识别和使用通用连接器。通用连接器允许合并和比较所有不同来源的数据。如果没有通用连接器,就很难(实际上是几乎不可能)将数据湖仓中的不同数据关联起来。但有了这个中西,就可以关联任何类型的数据。 使用数据湖仓,就有可能实现以往任何其它方式都不可行或不可能实现的某种程度的数据分析和机器学习。 但与其它架构一样,我们需要理解数据湖仓的架构以及它的能力,以便于我们基于这种架构创建数据分析蓝图和开展数据分析规
数据作为生产要素已经被提升至国家战略层面,如何激活数据要素、体现数据价值,如何有效利用数据赋能数字化转型,成为当前炙手可热的问题。本书厘清了数据治理、数据管理和数字化转型的关系,介绍了数据治理核心工作中经常出现的问题和优秀实践,明确了数字化转型的核心内容、方法路径和评估机制,通过大型企业数据治理或数字化转型案例为读者提供有价值的参考。本书适合首席执行官、首席信息官、首席数据官等从事企业管理和数据管理工作的人员阅读,有助于提升对数据治理和数字化转型的认识,为在组织中有效开展数据治理和数字化转型工作提供思路和借鉴。
本书是*1 X职业技能等级证书 智能仓储大数据分析 配套教材。根据证书的等级划 分,本套教材分为初、中、高三个等级,总体上每个级别70%的内容是关于运营数据的分析,30%的内容是关于设备数据的分析,每个等级的侧重点及对学生的要求不同。中级教材,在初级教材的基础上,要求学习者能够对智能仓储作业及运营的相关数据开展深入挖掘与分析,掌握推断统计的基本内容,具备初步的SQL与Python等与数据分析相关的编程语言应用能力,可以围绕业务完成较为全面、系统的大数据分析工作。 教材采用活页式设计,以工作任务单元为基本形式,以物流业务流程的开展为主线,从企业真实用人需求出发,立足岗位技能的真实需要,为培养物流类专业技术人才量身定制一套完整的大数据分析知识体系。 本教材适用于中高职、职业技术型大学、应用型本科院校的学生、教