本书首先讲解量化交易的基础知识,即量化交易的定义、特点、作用、主要内容、历史、与传统交易的区别、注意事项、JoinQuant(聚宽)量化交易平台;然后讲解量化交易开发语言Python,即讲解Python 语言的开发环境、基本语法、基本流程控制、特征数据类型、函数及应用、面向对象程序设计;接着讲解如何利用Python 语言编写量化策略、Python 量化策略的常用库和模块、获取数据函数、回测、因子分析;很后讲解Python 量化策略的技术指标实例和Python 量化交易策略实例。在讲解过程中既考虑读者的学习习惯,又通过具体实例剖析讲解量化交易过程中的热点问题、关键问题及各种难题。本书适用于各种不同的投资者,如股民、期民、中小散户、职业操盘手和专业金融评论人士,更适用于那些有志于在这个充满风险、充满寂寞的征程上默默前行的征战者和屡败屡战、愈挫
《小学生Python创意编程(视频教学版)》《Python编程入门与实践》是一本适合孩子、家长和职场办公人员学习的Python编程教材。本书以Python基础为起点,深入浅出地介绍了Python自动化编程的知识和技巧。无论你是初学者还是有编程基础的读者,本书都能满足你的需求。 本书采用了孩子喜欢的趣味方式编写,语言简洁易懂,让读者轻松愉快地学习Python编程。同时,本书也按照入门的思维方式编写,为孩子提供了学习编程的基础知识。如果你是成人或非计算机专业的学生,本书同样适合你,帮助你轻松掌握Python编程。 无论你是想学习编程提升职业技能,还是培养孩子的计算思维能力,本书都是你的。快来阅读本书吧,开启编程的奇妙世界!
本书介绍交互式设计的技术与技巧,讲述如何从目标用户的需求和期望出发,结合人类本身的心理特征和行为特点,用简单的方法创建易用、有效且让用户愉悦的设计。书中阐释了合理删除、分层组织、适时隐藏和巧妙转移这4个令交互设计成果程度简单易用的策略。第2版根据近年来交互设计领域的实践和发展,对书中案例进行了全面更新。
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度优先搜索、哈希函数、迪菲-赫尔曼密钥交换、k-means算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,便于学习和记忆。将本书作为算法入门的步,是很好不错的选择。
《Python统计分析基础及实践》以Pytho3为基础,详细介绍了Python在统计分析中的基础知识和实践应用,全书大致 由数据整理、概率和统计推断三部分组成。其中在章对统计分析对象——数据的基本用语和数据的分类进行了介绍。 第2~3章介绍了汇总平均值和数据方差的计算方法,进而介绍了数据可视化的方法。第4~9章介绍概率相关知识,概率是 统计分析中不可缺少的数学知识。0~12章介绍主要的统计分析方法,如参数估计、假设检验、回归分析等。其中每章 都用一个例子贯穿始终,提出问题并用Python编程实现,以点带面,可帮助读者快速理解知识点,并通过编程让读者对统 计分析建立直观的理解。 《Python统计分析基础及实践》知识点全面,内容安排由浅入深、循序渐进,特别适合大中专院校金融、财务、统计、 计算机、人工智能、机器学习相关专业学生学习,也适
本书旨在介绍开源的Python算法库和数学工具包SciPy。近年来,基于NumPy和SciPy的完整生态系统迅速发展起来,并在天文学、生物学、气象学和气候科学,以及材料科学等多个学科得到了广泛应用。本书结合大量代码实例,详尽展示了SciPy的强大科学计算能力,包括用NumPy和SciPy进行分位数标准化,用ndimage实现图像区域网络,频率与快速傅里叶变换,用稀疏坐标矩阵实现列联表,SciPy中的线性代数,SciPy中的函数优化等。
App Inventor的出现大大降低了编程门槛,没有程序设计经验的编程爱好者可以在短时间内就创建出炫目的安卓手机应用。本书带领读者通过动手实践数个编程实例来了解程序开发的逻辑。书中内容共分为21章,包含15个完整的应用,覆盖了游戏、教学、工具、信息管理以及网络应用等。本书不仅详细介绍了应用开发的步骤和要点,还针对每种应用的特征给出了进一步优化的建议,忠实还原了应用开发过程中遇到的问题和解决方法,是一本不可多得的编程技术与理念并重的实践指南。
本书采用生动活泼的语言,从入门者的角度,讲解了Python 语言和sklearn 模块库内置的各种经典机器学习算法;介绍了股市外汇、比特币等实盘交易数据在金融量化方面的具体分析与应用,包括对未来股票价格的预测、大盘指数趋势分析等。简单风趣的实际案例让广大读者能够快速掌握机器学习在量化分析方面的编程,为进一步学习金融科技奠定扎实的基础。
内 容 简 介本书通过构建多种几何图形或函数曲线的程序实例,由浅及深地阐述Python编程在画几何图形时所需要的知识和方法。每个实例都会让读者体会到几何组合图形的美观和编程思维的精妙,初步建立数学建模、程序分析、程序设计的思维。本书不是侧重Python编程语法,而是重在从解决实际数学问题的角度出发阐述程序设计的逻辑和实现代码,其中涉及的必要的和基本的编程知识及概念,也会讲解。本书适合具备小学和初中几何知识的读者在入门学习Python编程时使用,可在老师的辅导下学习和使用。
编程的核心是算法,学习算法不仅能教会你解决问题的方法,而且还能为你今后的发展提供一种可能。《你也能看得懂的Python算法书》面向算法初学者,首先介绍当下流程的编程语言Python,详细讲解Python语言中的变量和循序、分支、循环结构,以及列表和函数的使用,为之后学习算法打好基础。然后以通俗易懂的语言讲解双指针、哈希、深度、广度、回溯、贪心、动态规划和很短路径等经典算法。《你也能看得懂的Python算法书》适合有编程基础的算法爱好者阅读。
本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。 全书共20章,大致分为4个部分。部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。 本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
本书首先对Arduino的用法进行了简单的介绍;然后详细解说了电子制作的基础知识、各种传感器的用法、电子电路的搭建方法和Sketch等;接着介绍了将Arduino连接网络的两种方法:一是难度稍高的使用Arduino M0 Pro和ESP-WROOM-02的方法,二是更为方便的使用Web服务BaaS的方法;最后介绍了4个电子制作的具体例子。
编程的核心是算法,学习算法不仅能教会你解决问题的方法,而且还能为你今后的发展提供一种可能。《你也能看得懂的Python算法书》面向算法初学者,首先介绍当下流程的编程语言Python,详细讲解Python语言中的变量和循序、分支、循环结构,以及列表和函数的使用,为之后学习算法打好基础。然后以通俗易懂的语言讲解双指针、哈希、深度、广度、回溯、贪心、动态规划和很短路径等经典算法。《你也能看得懂的Python算法书》适合有编程基础的算法爱好者阅读。
编程的核心是算法,学习算法不仅能教会你解决问题的方法,而且还能为你今后的发展提供一种可能。《你也能看得懂的Python算法书》面向算法初学者,首先介绍当下流程的编程语言Python,详细讲解Python语言中的变量和循序、分支、循环结构,以及列表和函数的使用,为之后学习算法打好基础。然后以通俗易懂的语言讲解双指针、哈希、深度、广度、回溯、贪心、动态规划和很短路径等经典算法。《你也能看得懂的Python算法书》适合有编程基础的算法爱好者阅读。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
《跟老齐学Python》系列后续。读者在本书中可以学习到Numpy、Pandas、matplotlib、SciPy、SymPy等与数据分析相关的库,掌握其所定义的数据对象以及常用的属性和方法等,并通过各种类型的应用举例将所学基本知识给予综合应用。
全书共12章,内容包括:理解微服务、使用flask、测试驱动开发与文档化、设计Forrest、与其他服务交互、保护服务安全、使用微服务、打包Forrest、将服务Docker化、在AWS上部署、超前思维等。