Python是当下热门、流行的编程语言之一,不仅有着非常广泛的应用,而且由于其学习门槛较低,易编易学,也非常适合广大中小学生和青少年学习。本书以 青少年学Python编程 为线索,通过浅显易懂的语言及生动形象的典型案例进行讲解,内容安排由浅入深,层层递进。 全书共15章,从零开始,系统地讲解青少年学习 Python 编程的相关知识。每章都精心安排了编程示例,让读者从理解知识轻松过渡到应用知识,达到学以致用的目的。通过对本书内容的学习,旨在帮助广大青少年锻炼逻辑思维,培养分析问题、解决问题的能力。 本书非常适合中小学生学习阅读,尤其适合 10 岁以上的孩子或者他们的父母和老师辅导孩子学习编程使用。本书也可作为广大少儿编程培训机构、少儿编程兴趣班的教材参考用书。
《Python编程实战:妙趣横生的项目之旅》基于Python语言,通过项目展示Python的奇妙应用,适合Python初学者学习。在本书中,你将使用Python编程语言模拟探索火星、木星以及银河系遥远的地方,体验诗人的意境,了解高级的金融知识等。你还会学到各种各样的技术,如马尔可夫链分析技术、蒙特卡罗模拟、图像叠加技术、基因遗传算法等。与此同时,你还会学习一些模块的使用方法,例如pygame、Pylint、pydocstyle、Tkinter、python-docx、Matplotlib和pillow等。 《Python编程实战:妙趣横生的项目之旅》基于一些有趣的项目进行讲解,能够让读者在新奇的项目案例中体验学习Python的乐趣。此外,读者还能将自己所学的知识与实际的应用程序开发、数据库设计和解决实际问题联系起来,提升自己的项目实践能力。
本书是Python领域备受推崇的经典作品,致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,写出简洁、流畅、易读、易维护,并且地道的Python代码。本书着重讲解Python语言所独有的功能,助你成功进阶为Python高手。第2版与时俱进,教你跳出旧有经验,探索并运用地道的Python 3功能。第2版主体内容分为五部分:数据结构、函数即对象、类和协议、控制流、元编程。每一部分都精彩纷呈,通过丰富的示例和细致的讲解,教你充分利用Python特性,写出有效且现代的Python 3代码。
本书由流行深度学习框架Keras之父弗朗*瓦 肖莱执笔,通过直观的解释和丰富的示例帮助你构建深度学习知识体系。作者避免使用数学符号,转而采用Python代码来解释深度学习的核心思想。全书共计14章,既涵盖了深度学习的基本原理,又体现了这一迅猛发展的领域在近几年里取得的重要进展,包括Transformer架构的原理和示例。读完本书后,你将能够使用Keras解决从计*机视觉到自然语言处理等现实世界的诸多问题,包括图像分类、图像分割、时间序列预测、文本分类、机器翻译、文本生成等。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
Python 因其简单易学、功能强大、开发效率高、拥有强大的第三方库等优点,使其成为学习人工 智能的编程语言。《NumPy 数据处理详解 Python 机器学习和数据科学中的高性能计算方法》就 从 Python 中经常使用的 NumPy 库的基础知识入手,讲解了实用的高速数据处理方法。大数据时代, NumPy 因其包含大量的数学函数,能够处理多维数组,而且处理速度堪比 C 语言,所以 NumPy 也成 为机器学习和数据科学领域数据处理不可或缺的库。全书详细介绍了 NumPy 基础知识、NumPy 与数组 操作、NumPy 数学函数的应用和 NumPy 机器学习编程方法,特别适合机器学习工程师、数据科学家、 人工智能开发相关人员系统学习 NumPy 使用方法,或将此书作为案头手册,随时翻阅查看。
《Python金融大数据分析 第2版》分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了Python的基础知识以及Python中非常有名的库NumPy和pandas工具集,还介绍了面向对象编程;第3部分介绍金融数据科学的相关基本技术和方法,包括数据可视化、输入/输出操作和数学中与金融相关的知识等;第4部分介绍Python在算法交易上的应用,重点介绍常见算法,包括机器学习、深度神经网络等人工智能相关算法;第5部分讲解基于蒙特卡洛模拟开发期权及衍生品定价的应用,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值等知识。 《Python金融大数据分析 第2版》本书适合对使用Python进行大数据分析、处理感兴趣的金融
全书分为 8 章, 主要内容如下:第1章介绍学术论文插图绘制的规范性和基本原则以及学术论文插图的配色基础;第2章介绍绘制学术论文插图的主要工具,并重点介绍 Matplotlib、Seaborn、ProPlot 以及 SciencePlots 工具包的语法及其重要特征;第3章介绍学术论文中常见的单变量图及其绘制方法,包括直方图、密度图、Q-Q 图等;第4章介绍学术论文中常见的双变量图及其绘制方法, 具体包括误差线、柱形图、箱线图、相关性散 点图以及矩阵热力图等;第5 章介绍学术论文中常见的多变量图及其绘制方法,包括等高线图、点图系列、 三元相图、 3D 图系列以及 RadViz 图等;第 6 章介绍学术论文中常见的空间数据型图及其绘制方法,包括分 级统计地图、连接线地图、等值线地图以及子地图等;第 7 章介绍学术论文中常见的可视化图及其绘制方法,包括配对图系列、韦恩图、泰勒
《Python语言科研绘图与学术图表绘制从入门到精通》系统介绍了使用Python语言进行数据处理、分析和科研绘图的相关知识和技能。 全书共11章,第1章讲解Python基础,第2章讲解数据处理与分析,第3章讲解科研绘图与学术图表绘制库,第4章讲解绘制单变量图形,第5章讲解绘制双变量图形,第6章讲解绘制多变量图形,第7章讲解绘制其他2D图形,第8章讲解绘制3D图形,第9章讲解地理信息可视化,第10章讲解数据学术报告、论文和出版,第11章讲解实战训练营。 《Python语言科研绘图与学术图表绘制从入门到精通》包含大量实例,内容由浅入深,循序渐进,既可作为Python与数据科学相关技能的教材,也可作为研究人员的实用手册,尤其适合需要绘制高质量科研图表的研究人员和在读研究生。
全书共9 章,通过清晰的结构和丰富的案例,循序渐进地引导读者探索AI 技术在Excel办公自动化领域所开辟的一片新天地。 第1章:主要介绍如何搭建和测试Python 的编程环境,为运行Python 代码做好准备。第2章:介绍ChatGPT 和文心一言的基本用法,让读者学会利用问答式AI 工具独立学习知识和解决问题。 第3章:介绍辅助Excel 办公的AI 工具,包括ChatExcel、AI-aided Formula Editor、 Numerous.ai、模力表格等。用户不需要精通Excel 的操作和工作表函数,只需要用自然语言下达指令,AI 工具就能完成数据的处理或复杂公式的编写。 第4章:主要讲解借助ChatGPT 实现低门槛Python 编程的基础知识,包括AI 辅助编 程的特长和局限、基本步骤、应用实例等。 第5 ~ 9 章:通过丰富的典型案例详细介绍如何将ChatGPT 与Python 结合起来,实现多种常见的Excel 办公操作,包括工作簿、工作表、行
本书是《看漫画学Python》的进阶版本,继续秉承有趣、有料、好玩、好用的理念,并继续采用《看漫画学Python》一书中3个不同的漫画人物角色,通过这3个角色之间的轻松对话把复杂的技术问题简单化。本书总计12章。第1章讲解Python的IDE工具PyCharm的基础知识、高级功能和调试功能;第2章讲解如何用Python绘图库Turtle绘制基本图形;第3章讲解Python的Qt库PyQt的基础知识和用法;第4章讲解如何用分词库实现分词,以及如何用词云库形成词云;第5章讲解如何用OpenCV库实现图像处理和人脸检测;第6章讲解网络爬虫技术;第7章讲解如何用Python访问MySQL;第8章讲解如何用Python解析XML文档;第9章讲解如何用xlwings库操作Excel文件;第10章讲解如何用pyecharts库进行数据可视化。第11~12章通过两个项目实战帮助读者将前10章所学的内容融会贯通。本书贯穿了动手实践环节,旨在帮助读者
《Python应用数值方法 解决工程和科学问题》是为想要学习和应用数值方法来解决工程和科学问题的学生撰写的。书中提供了足够丰富的理论知识。如果读过本书的姊妹篇《工程与科学数值方法的MATLAB实现(第4版)》,就会发现过渡到Python程序是无缝的!不需要事先具有Python编程经验。 本书以解决问题为导向,强调理论联系实际。各章均引入实际的工程和科学问题,提供从相关概念定义、理论分析到算法实现的全套解决方案。每章末尾安排有课后习题,方便读者在巩固所学知识的同时,进一步提升自己编写代码和解决问题的水平。
数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将 Python课程学习 与 机器学习课程学习 有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯
本书不是一本编程技术书,而是一本讲解如何利用Python实现办公自动化的案例型教程。 全书共12章,结构上可划分为3个部分。第1部分(第1章、第2章)主要讲解Python编程环境搭建、Python核心语法知识、文件系统操作、文本处理等Python高效办公的基础知识与基本技能。第2部分(第3~10章)全面讲解如何利用Python高效地完成与Word、Excel、PowerPoint等常用办公软件相关的操作。第3部分(第11章、第12章)主要讲解如何利用Python模拟鼠标和键盘操作,快速完成批量化和流程化的工作。 本书理论知识精练,案例典型实用,学习资源齐备,十分适合具备一定的办公软件操作基础又想进一步提高工作效率的办公人员阅读,对于Python编程初学者而言也是相当不错的参考资料。
大数据时代已经到来,随着数据的逐步开放,交通领域的研究课题或多或少都要接触、使用时空 大数据。交通领域的从业者迫切需要强有力的工具和技术应对日益纷杂的交通数据。交通是一个交叉 学科,交通数据分析人才的知识体系需要与数据处理、网络爬虫、数据可视化、地理信息、复杂网络、 数据挖掘、机器学习等多学科知识深度融合,这也为交通领域的人才培养带来巨大挑战。 在此背景下,本书针对不同的学习阶段与业务需求设计了三篇共15章内容。基础篇(第1~5章) 梳理Python数据分析、网络爬虫、数据可视化、地理信息等基础知识;应用篇(第6~10章)介绍 出租车GPS数据、地铁IC刷卡数据、共享单车订单数据、公交GPS数据等各类时空大数据的实际案 例应用;方法篇(第11~15章)融汇数据挖掘、空间统计、复杂网络学科等交叉学科方法,与交通
本书分为上、下两大部分,共计22章。部分(第1~11章)由浅入深地介绍Python的基础知识,包括变量、数值、条件语句、文本字符串、循环语句、元组、列表、字典、集合、函数、对象、类、模块、库,等等。掌握这些基础知识将为运用Python奠定牢固的基础。第二部分(第12~22章)介绍Python的应用,所涉及的领域包括Web应用、数据库、网络和机器学习。你将学会用Python处理时间、进行网络通信、完成数据科学任务等,还会了解并发的相关知识。
本书基于广受好评的 Python工匠 系列开源文章。全书从工程实践角度出发,通过剖析核心知识、展示典型案例与总结实用技巧,帮助大家系统进阶Python,写好工程代码,做好实践项目。 本书共计13章,分为五大部分:变量与基础类型、语法结构、函数与装饰器、面向对象编程、总结与延伸,涵盖Python编程的方方面面。本书的写作方式别具一格,核心知识点都会通过三大板块来阐述:基础知识、案例故事、编程建议。其中基础知识帮助大家快速回顾Python基础;案例故事由作者经历的编程项目与案例改编而来,兼具实战性与趣味性;编程建议以大家喜闻乐见的条目式知识点呈现,短小精悍,可直接应用于自己的编程实践中。
Python 的丰富模块(module)以及广泛的应用范围,使Python 成为当下重要的计算机语言之一。本书尝试将Python 常用模块与应用分门别类组织起来,相信只要读者遵循本书实例,一定可以轻松学会Python 语法与应用,逐步向Python 高手之路迈进,这也是撰写本书的目的。 为了提升阅读体验,《Python王者归来: 增强版》为彩色印刷,在图书结构、案例选择以及代码样式上都进行了细 心设计,力争呈现给读者一本与众不同的编程图书。本书适合所有对Python 编程感兴趣的读者阅读,同时也可以作为院校和培训机构的相关专业教材。
《Python 网络爬虫与数据可视化应用实战》是一本介绍大数据时代用 Python 进行数据获取、数据清洗 和数据可视化分析的技术图书。全书共分两篇,其中第 1 篇主要介绍了数据获取的相关知识,具体内容包 括 HTML、JSON 与网络爬虫基础,爬取静态网页,使用 CSS 选择器爬取数据,遍历 HTML 网页并获取 数据,使用 XPath 表达式与 Ixml 包创建爬虫程序,使用 Selenium 爬取动态网页,Scrapy 爬虫框架的使用, 数据存储等 ;第 2 篇主要介绍数据分析及可视化相关知识,具体内容包括数据可视化基础知识,Pandsa 数 据处理,使用 Pandas、Matplotlib、Seaborn、Bokeh 等工具进行数据分析和可视化等。每篇均设置特别章 节进行了综合案例演练,提高综合水平。 《Python 网络爬虫与数据可视化应用实战》一书内容丰富,涵盖面广,特别适合作为大中专院校相关 专业的教材,也适合作为大数据分
本书是笔者多年从事高校教学经验的结晶之作。全书深入浅出地讲解了使用Python语言进行游戏开发以及帮助读者快速掌握游戏设计的基本原理和方法,同时提高应用Python语言编程的能力。 全书精选11个游戏案例,涵盖不同的游戏类型,每章围绕一个经典游戏案例展开,并突出一个游戏编程的主题。本书涉及的主要知识点包括游戏循环的原理、鼠标及键盘事件的处理、碰撞检测及处理、随机数的运用、定时器的使用、游戏场景的滚动、角色动画的播放、音效及音乐的播放、缓动效果、游戏关卡设计、游戏人工智能的原理及运用等。本书将Python语法知识及常用的编程技巧糅合在各个游戏案例中进行介绍,为读者展示Python语言的实际运用场景。 本书内容安排合理,架构清晰,注重理论与实践相结合,适合作为Python开发零基础读者的教程,也可作为高等院校的辅导教材,
《Python办公自动化从入门到精通》讲解如何使用Python技术实现自动化办公。 《Python办公自动化从入门到精通》分为两大部分,共19章。第1部分为基础语法,即从基础入门开始介绍Python语言的基础语法知识,内容对应第1章~第6章,包括初识Python、Python语法元素、程序控制语句、组合数据类型、函数、类。第2部分为高阶办公,即使用Python语言实现办公操作,内容对应第7章~第19章,包括操作文件、库、操作文件夹、操作Excel文件、操作Word文件、操作PPT文件、操作PDF文件、操作HTML网页、网络爬虫、自动收发邮件、聊天机器人和二维码、控制鼠标和键盘、批量处理视频。除第1章外,每一章都包含项目案例,并且在项目案例中详细分析代码的设计思路和编写过程。 《Python办公自动化从入门到精通》适用人群为需要入门Python编程的学生和需要提高办公效率的工作人员、网
本书从实战的角度讲解Python在各个领域的应用案例,这些领域包括操作系统、GUI、ChatGPT、动画、多媒体(图像、音频和视频)、办公自动化、控件软件、加密和解密、数学计算、文本处理。 上述技术领域涵盖的章节如下。 (1) 文件系统(第1~2章): 主要包括对文件和文件夹的操作、获取文件和目录属性,搜索文件和目录、创建快捷操作,控制回收站、Windows注册表、设置启动项、显示系统窗口等。 (2) GUI(第3、5章): 主要包括PyQt6的基本用法、异形窗口、(半)透明窗口,控制状态栏等。 (3) ChatGPT(第4章): 主要包括ChatGPT的基本概念、ChatGPT的竞品、注册和登录ChatGPT,以及应用ChatGPT做的两个项目 聊天机器人和编程魔匣。 (4) 动画(第6章): 主要包括属性动画、缓动动画、数学动画、生成动画gif、三维仿真等。 (5) 多媒体(第7~10章): 主要包括播放音频、录制音频、音频分
本书教你如何从基于时间的数据(如日志、客户分析和其他事件流)中获得即时、有意义的预测。在这本通俗易懂的书中,作者通过带有注释的Python代码进行全面演示,你将学习用于时间序列预测的统计和深度学习方法。通过跟随书中的实例锻炼你的技能,你很快就会准备好建立自己的准确、有洞察力的预测。