机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。 《机器学习实战》第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。 《机器学习实战》通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计
软件质量,不但依赖架构及项目管理,而且与代码质量紧密相关。这一点,无论是敏捷开发流派还是传统开发流派,都不得不承认。本书提出一种观点:代码质量与其整洁度成正比。干净的代码,既在质量上较为可靠,也为后期维护、升级奠定了良好基础。作为编程领域的佼佼者,本书作者给出了一系列行之有效的整洁代码操作实践。这些实践在本书中体现为一条条规则(或称“启示”),并辅以来自实际项目的正、反两面的范例。只要遵循这些规则,就能编写出干净的代码,从而有效提升代码质量。本书阅读对象为一切有志于改善代码质量的程序员及技术经理。书中介绍的规则均来自作者多年的实践经验,涵盖从命名到重构的多个编程方面,虽为一“家”之言,然诚有可资借鉴的价值。
随着机器视觉技术的飞速发展,大量需要使用机器视觉代替人工检测的需求应运而生。Halcon在开发机器视觉项目中表现出的高效性和稳定性,使其应用范围非常广泛。本书将针对机器视觉的原理和算法,以及如何应用算法解决问题进行探讨和说明,并利用Halcon对各种机器视觉算法进行举例,让读者全面、深入、透彻地理解Halcon机器视觉开发过程中的各种常用算法的原理及其应用方法,提高实际开发水平和项目实战能力。同时,也为机器视觉项目的管理者提供项目管理和技术参考。 《Halcon机器视觉算法原理与编程实战》适合需要全面学习机器视觉算法的初学者,希望掌握Halcon进行机器视觉项目开发的程序员,需要了解机器视觉项目开发方法的工业客户、机器视觉软件开发项目经理、专业培训机构的学员,以及对机器视觉算法兴趣浓厚的人员阅读。
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。 第1章介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。 第2章介绍了 基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。 第3章介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。 第4章介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。 第5章介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。 第6章介绍了算法在职场上的一些应用,例如使用LRU算法
算法是个有趣的东西——针对某个问题设计算法的时候,不会的人感觉像“大海捞针”,而会的人则感觉像“一苇渡江”。高手的头脑里都有一张“算法地图”,算法之间不是孤立的,而是彼此连通的。算法之间的内在联系有很
本书围绕新基建的云计算、大数据及人工智能进行介绍,分为以下五个部分。 第一部分介绍大数据的概念与特点,以及典型的产业应用场景;第二部分介绍目前云计算中的一个重要的研究与应用领域 容器云,包含应用容器引擎Docker与容器编排工具Kubernetes;第三部分是大数据分析的基础,也是大数据分析技术的重点,包含Hadoop、HBase、Hive、Spark的环境搭建及开发流程;第四部分是机器学习相关算法的应用,包含scikit-learn、SparkML、TensorFlow工具的使用;第五部分,以实例介绍如何使用Spark机器学习库中的协同过滤算法,来实现一个基于Web的推荐系,以及介绍如何使用OpenCV与TensorFlow构建卷积神经网络来实现基于Web的人脸识别。 本书轻理论,重实践,适合有一定编程基础,且对云计算、大数据、机器学习、人工智能感兴趣,希望投身到新基建这一伟大事业的读者学习。同
当今社会,项目管理已成为组织与个人的 管理技能。项目管理的核心是对项目任务的有效调度安排,涉及运筹学在项目实践中的合理应用。 本书详细梳理了项目调度问题中的各类要素,系统构建了单一项目与并行多项目的各类数学模型,在此基础上深入介绍了项目网络技术与启发式算法,并针对项目调度的各类扩展问题提出了相应的元启发式算法。本书可供项目管理领域的实践者和研究者参考。