本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了各种数据结构和算法的基本原理。第1章介绍了链表、数组、栈等数据结构;从第2章到第8章,分别介绍了和排序、查找、图、安全、聚类、数据压缩等相关算法,较为全面地介绍常见算法与数据结构知识。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,易于理解,便于学习和记忆。将本书作为算法入门的第一步,是非常不错的选择。
《深入浅出算法竞赛(图解版)》是为帮助读者理解基本的算法思想和编写高效的解决问题的程序而编写的。全书共6章,第1章概述了算法与算法竞赛的知识;第2章介绍了计算机程序解决问题的基本方法 穷举算法与贪心算法;第3章讲解了随机算法,如何利用概率与期望优化算法的效率;第4章讲解了AI的思维模式 搜索算法,如何用更灵活的方式遍历每一种可行解;第5章讲解了动态规划,如何通过状态间的转移,巧妙地规划解;第6章讲解了将大事化小、小事化了的分治算法,如何将问题拆分为易于解决的小问题。 本书配备了大量的算法竞赛试题,使用算法竞赛常用的C 语言编写。同时,本书不拘泥于算法竞赛,在第2 ~ 6章的后每一节给出一段阅读材料,介绍算法有趣的应用,帮助读者拓宽思维。 本书的讲解避开了繁琐枯燥的理论,采用浅显易懂的语言和大量生动
本书将数学理论与实例相结合,这些实例以*先进的通用机器学习框架为基础,由Python实现,向读者介绍更复杂的算法。全书共25章,包括机器学习模型基础、损失函数和正则化、半监督学习导论、高级半监督分类、基于图的半监督学习、聚类和无监督学习模型、高级聚类和无监督学习模型、面向营销的聚类和无监督学习模型、广义线性模型和回归、时序分析导论、贝叶斯网络和隐马尔可夫模型、*大期望算法、成分分析和降维、赫布学习、集成学习基础、高级提升算法、神经网络建模、神经网络优化、深度卷积网络、循环神经网络、自编码器、生成对抗网络导论、深度置信网络、强化学习导论和高级策略估计算法。
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种趣味问题为目标,教读者用Python、JavaScript、C 编写机器学习算法,内容深入浅出,兼具实用性与大局观。读者将学习编写遗传算法、启发式算法、爬山算法、模拟退火算法,运用蒙特 卡洛模拟、点格自动机、适应函数解决问题。本书尤其适合对人工智能和机器学习感兴趣的程序员进阶学习。
《算法笔记》内容包括:C/C++快速入门、入门模拟、算法初步、数学问题、C++标准模板库(STL)、数据结构专题(二章)、搜索专题、图算法专题、动态规划专题、字符串专题、专题扩展。《算法笔记》印有二维码,用来实时更新、补充内容及发布勘误的。《算法笔记》可作为计算机专业研究生入学考试复试上机、各类算法等级考试(如PAT、CSP等)的辅导书,也可作为“数据结构”科目的考研教材及辅导书内容的补充。《算法笔记》还是学习C语言、数据结构与算法的入门辅导书,非常适合零基础的学习者对经典算法进行学习。
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。首先介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。第二章 介绍了最基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。第三章 介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。第四章 介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。第五章 介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。第六章 介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算
深度学习是目前学术界和工业界都非常火热的话题,在许多行业有着成功应用。本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。全书内容大致分为两个部分,第一部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二部分介绍深度学习在一些领域的应用,包括计算机视觉、自然语言处理、推荐系统、计算广告、视频处理、计算机听觉、自动驾驶等。本书仍然采用知识点问答的形式来组织内容,每个问题都给出了难度级和相关知识点,以督促读者进行自我检查和主动思考。书中每个章节精心筛选了对应领域的不同方面、不同层次上的问题,相互搭配,展示深度学习的“百
物联网、人工智能、大数据解析和机器人工学等,日新月异的科学技术每天都在给人类的生活带来重要的变化。身处这样的一个时代,我们面临一个选择,即怎样面对日新月异的科学技术的发展。在这样的变化中,是作为被动的一方,还是成为主动的一方,抑或是站在时代的前端成为创造的一方?这将取决于我们的选择。只要我们不想成为被动的一方,掌握编程的基本技能就是必不可少的。 本书从讲解学习编程的益处出发,向读者介绍了*好的学习编程的方法。紧接着,介绍了主要编程工具的概要和特点,包括 编程一小时 点灯机器人 Scratch 编码猴 等编程工具。了解这些编程工具后,书中又教读者使用 Scratch 从头到尾制作了一个游戏,从而提高他们的编程技能。*后,作者分析了各编程语言的特点,并为读者学习编程提供了真正有益的指导。本书讲解由浅入深,
本书基于Python语言介绍了数据结构与算法的基本知识,主要内容包括抽象数据类型和Python面向对象程序设计、线性表、字符串、栈和队列、二叉树和树、集合、排序以及算法的基本知识。本书延续问题求解的思路,从解决问题的目标来组织教学内容,注重理论与实践的并用。
计算机技术和互联网技术的迅速发展,使得网络上的网站、网页等各种信息以爆炸性的趋势增长,随之而来的还有大量的冗余信息和垃圾信息,并由此带来了信息泛滥、信息迷航以及信息疾病等一系列问题。这些冗余信息、垃圾信息不但影响着用户对Internet的使用效率和质量,同样影响着网络的健康发展。因此,基于此而产生的网络信息过滤技术相关研究具有巨大的社会效益和经济效益。 网络信息过滤,就是根据用户的信息需求,利用一定的工具从大规模的动态信息流中自动筛选出满足用户需求的信息,同时屏蔽掉无用的信息的过程。广义的信息过滤包括对文本、音频、图像、视频等多种信息存在形式的过滤处理,狭义的信息过滤是特指对文本信息的过滤处理。本书相关研究就是针对文本信息过滤特别是中文文本信息过滤中存在的问题而提出的。 本书面向从事自
本书主要介绍了一种新型的元启发式全局优化算法 类电磁机制(EM)算法。首先针对EM算法的一些不足,对其进行了改进,提出了多种改进EM算法,这些算法为后续的研究提供了指导;然后以改进的算法为基础,分别提出了求解带约束优化问题、多目标优化问题、神经网络训练问题以及模式分类问题的EM算法;并提出了采用离散排列编码方式的离散化EM算法,用来求解流水车间调度问题和装配序列规划问题;zui后介绍了基于EM算法的函数优化软件。附录中给出了本书中使用的标准测试问题的详细介绍。本书可作为计算机、自动控制、人工智能、管理科学和工业工程等专业高年级本科生和研究生的学习参考书,也可供从事计算智能、生产调度等工作的研究人员和工程技术人员参考使用。
本书共13章,第1章引入了微服务架构模式语言的概述;第2章解释了为什么软件架构很重要,并描述了可用于将应用程序分解为服务的模式;第3章介绍了微服务架构中强大的进程间通信的几种模式;第4章介绍Saga模式;第5章介绍领域驱动设计(DDD)的聚合和领域事件等模式的使用;第6章介绍如何使用事件溯源模式;第7章介绍如何使用API组合模式或命令查询责任隔离(CQRS)模式;第8章介绍外部API模式;第9章和第10章介绍微服务自动化测试技术;第11章介绍开发生产就绪服务的各个方面;第12章介绍部署模式;第13章介绍绞杀者模式。