《计算机视觉:算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。《计算机视觉:算法与应用》从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述。作者还运用统计模型来分析和运用严格的工程方法来解决这些问题。 《计算机视觉:算法与应用》作为本科生和研究生 计算机视觉 课程的理想教材,适合计算机和电子工程专业学生使用,重点介绍现实中行之有效的基本技术,通过大量应用和练习来鼓励学生大胆创新。此外,《计算机视觉:算法与应用》的精心设计和编排,使其可以作为计算机视觉领域中一本独
本书是算法竞赛的入门和进阶教材,包括算法思路、模板代码、知识体系、赛事相关等内容。本书把竞赛常用的知识点和竞赛题结合起来,讲解清晰、透彻,帮助初学者建立自信心,快速从实际问题入手,模仿经典代码解决问题,进入中级学习阶段。 全书分为12章,覆盖了目前算法竞赛中的主要内容,包括算法竞赛概述、算法复杂度、STL和基本数据结构、搜索技术、高级数据结构、基础算法思想、动态规划、数学、字符串、图论、计算几何。 本书适合用于高等院校开展的ICPC、CCPC等算法竞赛培训,中学NOI信息学竞赛培训,以及需要学习算法、提高计算思维的计算机工作者。
机器学习是人工智能研究领域中的一个极其重要的方向。在现今大数据时代的背景下,捕获数据并从中萃取有价值的信息或模式,使得这一过去为分析师与数学家所专属的研究领域越来越为人们瞩目。 本书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效可复用的Python代码阐释如何处理统计数据,进行数据分析及可视化。读者可从中学到一些核心的机器学习算法,并将其运用于某些策略性任务中,如分类、预测及推荐等。 本书适合机器学习相关研究人员及互联网从业人员学习参考。
本书共13章,第1章引入了微服务架构模式语言的概述;第2章解释了为什么软件架构很重要,并描述了可用于将应用程序分解为服务的模式;第3章介绍了微服务架构中强大的进程间通信的几种模式;第4章介绍Saga模式;第5章介绍领域驱动设计(DDD)的聚合和领域事件等模式的使用;第6章介绍如何使用事件溯源模式;第7章介绍如何使用 API 组合模式或命令查询责任隔离(CQRS)模式;第8章介绍外部 API 模式;第9章和第10章介绍微服务自动化测试技术;第11章介绍开发生产就绪服务的各个方面;第12章介绍部署模式;第13章介绍绞杀者模式。
本书以MATLABR2020a软件为基础,详细介绍各种智能算法的原理及MATLAB在智能算法中的应用,是一本MATLAB智能算法设计的综合性参考书。全书以智能算法原理及MATLAB应用为主线,结合各种应用案例,详细讲解智能算法在MATLAB中的实现方法。 全书共分为3部分:第一部分为基础知识;第二部分介绍经典的智能算法及其在MATLAB中的实现方法,包括遗传算法、免疫算法、蚁群算法、粒子群算法、小波分析、神经网络算法和模糊逻辑控制等内容;第三部分详细介绍智能算法在工程中的应用,包括模糊神经网络在工程中的应用、遗传算法在图像处理中的应用、神经网络在参数估计中的应用、基于智能算法的PID控制器设计等内容。 本书以工程应用为目标,内容讲解深入浅出、循序渐进,既可作为高等院校理工科相关专业研究生、本科生的教材,也可作为广大科研工程技术人员的参
算法详解系列图书共有4卷,本书是第2卷 图算法和数据结构。本书共有6章,主要介绍了3个主题,分别是图的搜索和应用、*短路径以及数据结构。附录简单回顾了渐进性表示法。本书的每一章均有小测验、章末习题,这为读者的自我检查以及进一步学习提供了方便。 本书提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及正在准备面试的应聘者和面试官阅读参考。
算法是计算机科学领域*重要的基石之一。算法是程序的灵魂,只有掌握了算法,才能轻松地驾驭程序开发。 算法详解系列图书共有4卷,本书是第1卷 算法基础。本书共有6章,主要介绍了4个主题,它们分别是渐进性分析和大O表示法、分治算法和主方法、随机化算法以及排序和选择。附录A和附录B简单介绍了数据归纳法和离散概率的相关知识。本书的每一章均有小测验、章末习题和编程题,这为读者的自我检查以及进一步学习提供了较多的便利。 本书为对算法感兴趣的广大读者提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及在准备面试的应聘者和面试官阅读参考。
本书基于MATLAB 2020a软件,根据常用优化算法进行编写,包含多种优化算法的MATLAB实现方法,可以帮助读者掌握MATLAB在优化算法中的应用。 全书分为4部分,包括MATLAB基础知识、常规优化算法、智能优化算法和拓展应用。第一部分从初识MATLAB开始详细介绍MATLAB基础、程序设计、图形绘制等内容;第二部分介绍线性规划、非线性规划、无约束一维极值、无约束多维极值、约束优化方法、二次规划、多目标优化方法的MATLAB实现;第三部分介绍遗传算法、免疫算法、粒子群优化算法、小波变换、神经网络等在MATLAB中的实现;第四部分介绍MATLAB在分形维数和经济金融优化中的应用。 本书以MATLAB优化实现为主线,结合各种优化算法函数的说明、优化模型案例的讲解,使读者易看懂、会应用。本书讲解翔实,深入浅出,既可作为高等院校数学建模和数学实验的参考教材,也可作
大模型技术掀起了新一轮人工智能浪潮,以ChatGPT 为核心的大模型相关技术可以应用于搜索、对话、内容创作等众多领域,在推荐系统领域的应用也不例外。 本书主要分为3部分。 第1部分简单介绍大模型相关技术,包括大模型的预训练、微调、在线学习、推理、部署等。 第2部分将大模型在传统推荐系统中的应用抽象为4种范式 生成范式、预训练范式、微调范式、直接推荐范式,并对每种范式给出算法原理说明、案例讲解和代码实现。 第3部分以电商场景为例,讲解大模型在电商中的7种应用,包括生成用户兴趣画像、生成个性化商品描述信息、猜你喜欢推荐、关联推荐、冷启动问题、推荐解释和对话式推荐,每种应用场景都包含完整的步骤说明和详细的代码实现,手把手教你构建大模型推荐系统。 本书适合有一定推荐系统基础,期望深入了解和学习大模型技术
本书从一系列有趣的生活实例出发,全面介绍了构造算法的基础方法及其广泛应用,生动展现了算法的趣味性和实用性。书中介绍了算法在多个领域的应用,如图像处理、物理实验、计算机图形学、数字音频处理、机器学习等。其中,既有各种大名鼎鼎的算法,如神经网络、遗传算法、离散傅里叶变换算法、KNN、贝叶斯算法,也有不起眼的排序和概率计算算法。本书讲解浅显易懂而不失深度和严谨,对程序员有很大的启发意义。书中所有示例都与生活息息相关,充分地展现了算法解决问题的本质,让你爱上算法,乐在其中。本书在第1版的基础上新增了图像处理算法、游戏开发中检测碰撞常用的分离轴 (SAT)算法、垃圾邮件过滤相关的算法、中文分词算法、限流算法、手写数字识别和变声器等,进一步提升趣味性。 本书适合软件开发人员、编程和算法爱好者以及
本书是用轻松有趣的方法学习算法的入门指南。按照算法策略分为8章。第1章以算法之美、趣味故事引入算法,讲解算法复杂度的计算方法,以及爆炸性增量问题。2~7章讲解经典算法,包括贪心算法、分治算法、动态规划算法、回溯法、分支限界法、网络流算法。第8章讲解实际应用中的算法和高频面试算法,包括启发式搜索、敏感词过滤、LRU算法、快慢指针、单调栈、单调队列、零钱兑换、股票交易等。每一种经典算法都有4~8个实例,多数按照问题分析、算法设计、完美图解、算法详解、算法分析及优化拓展的流程进行讲解。全书讲解清晰,通俗易懂,紧扣工程教育认证的要求和实用性,力求满足新工科人才培养的需要。 本书为河南省 十四五 普通高等教育规划教材,提供了丰富的教学资源与答疑服务,包括源代码、课件、教案、习题、在线答疑和在线测试系
《数值分析》介绍现代科学与工程计算中常见的数值计算方法及理论.《数值分析》内容包括:数值计算的误差和基本原则、线性方程组的直接解法和迭代解法、非线性方程(组)的数值解法、矩阵特征值问题的数值解法、插值法、函数逼近与*线拟合、数值积分与数值微分和常微分方程初值问题的数值解法.《数值分析》既注重数值计算方法及理论,又注重数值计算方法的实用性,主要算法都给出了数值实例和Python程序实现,在书末以二维码的形式呈现,感兴趣的读者可以下载源代码进行学习.每章章末配备了适量的练习题和上机实验题,书末附有部分习题的参考答案.
本书通过趣味游戏编程项目讲解算法,提升读者学习算法的兴趣,降低读者学习算法的难度,增强读者将算法应用于编程实践的能力。 本书共 14 章,通过猜数字、飞翔的小鸟、得分排行榜、汉诺塔、八皇后、消灭星星、贪吃蛇、走迷宫、连连看、吃豆人、滑动拼图、井字棋、垒积木、十步万度等游戏,讲解顺序查找算法、二分查找算法,图形库 EasyX,插入排序算法、冒泡排序算法、选择排序算法、快速排序算法,递归算法,暴力搜索算法、回溯算法,FloodFill 算法,常见的数据结构(数组、链表、队列、栈、图、树)、标准模板库(STL),十字分割算法、图的广度优先搜索算法和深度优先搜索算法,加权图上的迪杰斯特拉算法、贪婪优先搜索算法、A*算法,状态空间上的搜索算法,博弈树的极大极小值搜索算法、 - 剪枝搜索算法,动态规划算法,遗传算法。 本书
这是一本关于 高级/进阶 算法和数据结构的图书,主要介绍了用于Web应用程序、系统编程和数据处理领域的各种算法,旨在让读者了解如何用这些算法应对各种棘手的编码挑战,以及如何将其应用于具体问题,以应对新技术浪潮下的 棘手 问题。 本书对一些广为人知的基本算法进行了扩展,还介绍了用于改善优先队列、有效缓存、对数据进行集群等的技术,以期读者能针对不同编程问题选出更好的解决方案。书中示例大多辅以图解,并以不囿于特定语言的伪代码以及多种语言的代码样本加以闸释。 学完本书,读者可以了解高级算法和数据结构的相关内容,并能运用这些知识让代码具备更优性能,甚至能够独立设计数据结构,应对需要自定义解决方案的情况。 本书可作为高等院校计算机相关专业本科高年级学生以及研究生的学习用书,也可供从事与算法相关工作
智能优化算法在解决大空间、非线性、全局寻优、组合优化等复杂问题方面具有独特的优势,因而得到了国内外学者的广泛关注,并在信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域得到了成功应用。本书介绍了8种经典智能优化算法 遗传算法、差分进化算法、免疫算法、蚁群算法、粒子群算法、模拟退火算法、禁忌搜索算法和神经网络算法的来源、原理、算法流程和关键参数说明,并给出了具体的MATLAB仿真实例。对于要用这些算法工具来解决具体问题的理论研究和工程技术人员,通过本书可以节省大量查询资料和编写程序的时间,通过仿真实例可以更深入地理解、快速地掌握这些算法。
作者莱维汀基于丰富的教学经验,开发了一套全 新的算法分类方法。该分类法站在通用问题求解策略 的高度,对现有大多数算法准确分类,从而引领读者 沿着一条清晰、一致、连贯的思路来探索算法设计与 分析这一迷人领域。本书作为第3版,相对前版调整 了多个章节的内容和顺序,同时增加了一些算法,并 扩展了算法的应用,使得具体算法和通用算法设计技 术的对应更加清晰有序;各章累计增加了70道习题, 其中包括一些有趣的谜题和面试问题。 《算法设计与分析基础(第3版)》十分适合用作 算法设计和分析的基础教材,也适合任何有兴趣探究 算法奥秘的读者使用,只要读者具备数据结构和离散 数学的知识即可。
本书是一本全面、系统地介绍烟花算法主要研究和典型应用的学术专著,从基础、理论、进展及应用4个方面详细地介绍了烟花算法的研究内容,清晰地展示了烟花算法的研究全貌。书中不仅介绍了许多烟花算法理论研究成果,还提供了大量重要烟花算法改进算法的流程图和烟花算法的统一代码框架,同时展示了丰富的成功应用实例。 本书可作为智能科学、人工智能、计算机科学和数据科学等相关专业高年级本科生和研究生的教材或参考书,也可作为信息、控制、通信、管理、工程技术等相关领域的研究人员和工程师的参考书。