周志华老师的《机器学习》(俗称 西瓜书 )是机器学习领域的经典入门教材之一。本书是《机器学习公式详解》(俗称 南瓜书 )的第2 版。相较于第1 版,本书对 西瓜书 中除了公式以外的重、难点内容加以解析,以过来人视角给出学习建议,旨在对比较难理解的公式和重点内容扩充具体的例子说明,以及对跳步过大的公式补充具体的推导细节。 全书共16 章,与 西瓜书 章节、公式对应,每个公式的推导和解释都以本科数学基础的视角进行讲解,希望能够帮助读者快速掌握各个机器学习算法背后的数学原理。 本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考
Transformer正在颠覆AI领域。市面上有这么平台和Transformer模型,哪些最符合你的需求? 将引领你进入Transformer的世界,将讲述不同模型和平台的优势,指出如何消除模型的缺点和问题。本书将引导你使用Hugging Face从头开始预训练一个RoBERTa模型,包括构建数据集、定义数据整理器以及训练模型等。 《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》分步展示如何微调GPT-3等预训练模型。研究机器翻译、语音转文本、文本转语音、问答等NLP任务,并介绍解决NLP难题的技术,甚至帮助你应对假新闻焦虑(详见第13章)。 从书中可了解到,诸如OpenAI的高级平台将Transformer扩展到语言领域、计算机视觉领域,并允许使用DALL-E 2、ChatGPT和GPT-4生成代码。通过本书,你将了解到Transformer的工作原理以及如何实施Transformer来决NLP问题。 主要内容 ? 了解用于解决复杂语言问题的新技术
ChatGPT 是目前市场上最为优秀的 AI 工具之一,它以强大的信息整合、知识链接、编程和语言理解等能力惊艳了全球,被广泛用于各行各业,以提高生产力。那么如此强大的 AI 工具该怎样使用呢? 《ChatGPT 实操应用大全(全视频 彩色版)》应运而生,这是一本关于 ChatGPT 全场景使用秘籍,为读者呈现 ChatGPT的 150种不同的使用方法和技巧,带读者深度解锁 ChatGPT的功能,释放出无限的创造力。它能够帮助用户轻松解决各种实际问题,极大地提高工作效率和生产力。不论是短视频内容创作、数据分析、日常办公、论文写作、金融投资,还是翻译、写代码等任务,本书都能够满足用户的需求。如果想要更好地利用 ChatGPT 功能,就阅读本书。本书主要涵盖 ChatGPT 的注册与登录、基本功能的使用、提示词用法、150 种应用场景、参数指令与 API 开发以及ChatGPT插件等内容,内容通
本书作为人工智能专业的入门书,带领读者初步学习和实践机器学习、深度学习的算法、流程和核心技术,并介绍了系统开发及开发环境,通过图解的方式将难懂的专业术语和算法表现出来,让没有相关专业基础的读者能够轻松入门。同时,本书还介绍了一些比较常用的网站网络服务,让读者能够学以致用。本书适合人工智能领域入门读者,也适合对人工智能感兴趣的其他领域读者学习。
本书主要介绍基于视觉的YOLO框架的技术原理和代码实现,并讲解目标检测领域中的诸多基础概念和基本原理,在YOLO框架的基础上介绍流行目标检测框架。本书分为4个部分,共13章。第1部分介绍目标检测领域的发展简史、主流的目标检测框架和该领域常用的数据集。第2部分详细讲解从YOLOv1到YOLOv4这四代YOLO框架的网络结构、检测原理和训练策略,以及搭建和训练的YOLO框架的代码实现。第3部分介绍两个较新的YOLO框架 YOLOX和YOLOv7,着重讲解其设计理念、网络结构和检测原理。第4部分介绍DETR、YOLOF和FCOS在内的流行目标检测框架和相应的代码实现。本书侧重目标检测的基础知识,包含丰富的实践内容,是目标检测领域的入门书,适合对目标检测领域感兴趣的初学者、算法工程师、软件工程师等人员学习和阅读。
本书基于学术写作的核心在于结构化的思维这一理念,全方位地介绍了如何应用 AI 辅助学术写作。AI 辅助学术写作的流程主要包括选题的确定、前言和文献综述的撰写、理论框架和研究方法的设计、研究框架与正文的组织、结论的构建、初稿的润色、标题摘要的撰写与投稿等方面。 本书力求为读者提供多样化的解决方案。这些解决方案依据不同的写作目标和策略制订,从而让读者可以根据具体需求选择。此外,本书还引导读者探索各种 AI 工具,应用好这些 AI工具有助于解决具体问题,如数据查询、参考文献管理、语言润饰等,极大地节省了学术写作的时间和精力。 无论是学生、教师、研究者,还是对学术写作有浓厚兴趣的读者,本书都能够帮助其更 好地理解人工智能在学术写作中的应用,在逻辑清晰、条理分明的框架内进行有效的学术写作,提高写作技巧,并
本书是中国科协新一代信息技术系列丛书之一。本书内容包括知识表示、知识获取、知识应用三部分。其中,知识表示主要介绍概念表示、知识表示、知识图谱;知识获取主要介绍搜索技术、群智能算法、机器学习、人工神经网络与深度学习;知识应用涉及计算机视觉、自然语言处理、语音处理、专家系统、规划、多智能体系统与智能机器人六部分。力求将人工智能的发展脉络、技术理论、产业成果以翔实的形态展现于人前。除了必要的知识点与宽泛的知识图谱,本书还深入浅出地介绍了有关智能搜索技术、计算机视觉、语言智能、机器人等在内的不同领域的应用实践成果。本书主要面向大学非计算机类的工科专业的高年级学生与研究生,帮助学生了解人工智能的发展过程与基本知识,熟悉人工智能产业的发展现状与市场需求,培养人工智能应用能力。同时,
申报课题是高校教师和科研工作者十分重要的工作内容。 本书采用倒金字塔思路,对课题申请书进行了拆解,并系统介绍了如何利用 AI 辅助做好课题申报工作。本书第一章对课题申报进行了概述,分别介绍了各级别课题的申报公告和申请书及活页。第二章~第十二章分别介绍如何利用 AI 辅助开展课题申报的具体工作,主要有寻找选题、分析课题立项选题,以及课题论证相关部分的写作,包括研究背景写作、学术史梳理及研究动态写作、研究价值写作、阐释研究对象与框架思路写作、课题的重点难点写作、主要目标写作、研究计划及其可行性写作、其他部分写作。本书讲解全面、细致,并采用案例直观展示,方便读者学习。
《未来可期:与人工智能同行》是一部探讨人工智能的现在和未来,以及人工智能时代的种种难题的作品集。 在ChatGPT横空出世的今天,我们只有了解人工智能,跟上它的脚步,才能不被时代淘汰。家用智能器、数字疗法、具身智能、元宇宙、虚拟人、数字分身 越来越多的新概念已经或即将涌入我们的生活,并切实影响衣食住行的方方面面。作者在书中不仅分析了当前的人工智能发展,更预测在不远的将来,人工智能如何一步步走进和改变我们的生活,如何给我们带来前所未有的便利,又如何给我们带来纷繁复杂的困扰。 人工智能的发展与人类自身的发展是一体两面的关系。作者真正想要预测的并不是人工智能技术会发展成什么样,而是人类会通过人工智能技术发展成什么样。
本书的目标,是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松地掌握机器学习的基本知识,从而拥有相关的实战能力。 本书通过AI 小白 小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python 基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。本书所有案例均通过Python及Scikit-learn 机器学习库和Keras 深度学习框架实现,同时还包含丰富的数据分析和数据可视化内容。 本书适合对AI 感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人,用以入门机器学习领域,建立从理论到实战的知识通道。
本书是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。 本书适合机器学习从业者或有志成为机器学习从业者的人阅读。
本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。 本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量示例和代码带领读者走进机器学习的世界,让读者对机器学习的研究内容、基本原理有基本认识,为后续进一步涉足深度学习打下基础。 本书适合对机器学习感兴趣的专业技术人员和研究人员阅读,同时适合作为人工智能相关专业机器学习课程的教材。
本书通过深入浅出的方式带领读者探索人工智能的世界。书中首先介绍了人工智能的基本概念、应用场景以及发展历程。并对神经网络、遗传算法、蒙特卡罗法、自然语言处理等人工智能技术的原理和应用场景进行了分析,并探讨了人工智能的未来发展趋势以及机遇与挑战。
白志刚编著的《自动调节系统解析与PID整定》采用生动形象的语言,深入讲解了PID参数整定的方法和自动调节系统控制策略的制定。书中带领读者一步一步理解PID参数的含义、曲线特征和整定方法,其中还有作者总结的整定口诀,好记好用,之后,通过火电厂自动调节系统的实例,具体说明了控制策略的制定和参数整定在实践中的应用,后总结了自动调节系统外围设备的故障处理。《自动调节系统解析与PID整定》作者在自动调节系统一线工作二十多年,对自动调节系统有深刻的认识,具有非常丰富的现场经验。《自动调节系统解析与PID整定》适用于化工、矿业、冶金、仪器仪表等自动化技术人员。
作者对计算机的运算和人脑思维的过程进行了比较研究,具有高度的前瞻性,为机器人研究指明了方向。《计算机与人脑》形象生动,图文并茂,对广大青少年科技创新思维具有极大启发作用.该书被誉为20世纪的天才之作。
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。
本书以通俗易懂的风格介绍了机器学习和深度学习技术,只涉及了基本的数学知识。本书由两位机器学习和深度学习领域的专家编写,书中的案例涵盖了银行、保险、电子商务、零售和医疗等多个行业。本书讲述如何在当今的智能设备和应用程序中使用机器学习和深度学习技术。本书提供了对书中涉及的数据集、代码和示例项目的下载。 l 机器学习和深度学习的概念 l 随机森林和提升方法 l Python编程与统计学基础 l 人工神经网络 l 回归与逻辑回归 l TensorFlow与Keras l 决策树 l 深度学习超参数 l 模型选择与交叉验证 l 卷积神经网络(CNN) l 聚类分析 l 循环神经网络(RNN)和长短期记忆网络(LSTM)
本书先从概率论的基础讲起,然后逐步深入到概率论在机器学习中的应用,最后结合机器学习实战案例,重点介绍了概率论的概念及其在机器学习中的应用。通过本书读者不但可以系统地学习常见概率的相关知识,还能对机器学习开发有更为深入的理解。 本书共10章,涵盖的主要内容:机器学习简介;为什么机器学习需要概率论;概率的定义;集合和事件;独立性;概率的性质;常见的计算概率方法;离散型和连续型概率简介;离散型和连续型概率的期望值、方差和标准差;几种常见的离散型和连续型概率分布;条件概率;联合概率;边缘概率;贝叶斯理论;随机过程简介;马尔可夫链;隐马尔克夫模型;高斯过程;常见的机器学习Python库;机器学习分类算法和回归算法简介;概率论在分类算法和回归算法中的应用;常见的分类算法和回归算法;强化学习简介;有
工程师需要知道的机器学习和人工智能提供的实例和图示来自Prosise的AI和ML课程,这]课程受到了全球各地许多公司和研究所的青睐和欢迎。作者不涉及让人滑悚然和望而生畏的数学公式,目的只有一个那就 是面向工程师和软件开发人员,帮助他们迅速入门并通过案例迅速运用人工智能和机器学习来解决业务问题。本书讲帮助读者学会什么是机器学习和深度学习以及两者各有哪些用途;理解常用的深度学习算法的原理及其应用;学会标记和未标记数据,监督学习和非监督学习有何差异;通过scikit-learn和神经网络Keras和TensorFlow ,运用Python来进行机器学习建模;训练和评分地柜模型与-进制和多类粉类器模型 ;构建面检测和面识别模型以及 对象检测模型。本书适合硬件工程师与软件开发人员阅读和参考
《机器学习实战使用R、tidyverse和mlr》将使用RStudio和非常棒的mlr程序包开启你的机器学习之旅。这本实用指南简化了理论,避免了不必要的复杂统计和数学知识,所有核心的机器学习技术都通过图形和易于掌握的示例进行清晰的解释。每一章的内容都十分引人入胜,你将掌握如何把新的算法付诸实践,以解决各种预测分析问题,包括泰坦尼克沉船事件中不同乘客的幸存概率、垃圾邮件过滤、毒酒事件调查等。 主要内容 使用tidyverse程序包处理和绘制数据 监督机器学习和非监督机器学习技术 分类、回归、降维和聚类算法 统计学基础
未来赢家是那些利用机器的力量获得优势的人。工作场所的主导是人还是机器? 在自动化这场游戏中,机器是助人完成任务,还是取代人类岗位? 我们将如何以共生方式与机器一起工作? 世界公司又是如何在这种非常特殊的关系中蓬勃发展的? 《共生:4.0时代的人机关系》使用不同的全球化组织的案例,探讨了机构、公司、个人和教育提供者将如何在发展变化过程中与新技术无缝集成,为智能自动化、人工智能和机器人技术驱动的未来描绘了图景。