本书是微软推出的 AI for Beginners 系列课程的中文版,专门为希望进入 AI 领域的初学者设计。本书提供为期 12 周、共24 堂课的系统学习路径,每堂课配有 Jupyter Notebook 实践笔记本,附带测验与练习,中文版还在 Gitee 上托管了课程相关的 Notebook,便于读者在实践中掌握人工智能的核心概念和应用。 书中涵盖如下内容:AI 历史与发展,探索人工智能从符号到深度学习的演变;神经网络与深度学习,使用 TensorFlow 和 PyTorch 框架讲解神经网络的基本原理及应用;计算机视觉与自然语言处理,学习图像识别和文本分析技术;其他 AI 技术,如遗传算法和多智能体系统等。 本书适合 AI 爱好者、初学者,以及相关专业的学生、老师阅读,不需要复杂数学背景即可轻松入门,通过实战项目提升操作能力。
机器学习系统既复杂又独特。复杂是因为它们由许多不同的组件组成,并涉及许多不同的领域。之所以说独特,是因为它们依赖于数据,不同用例之间的数据差异很大。在本书中,您将学习一种整体的方法来设计可靠、可伸缩、可维护的ML系统,并能适应不断变化的环境和业务需求。 作者Chip Huyen是Claypot AI的联合创始人,她考虑了每个设计决策 比如如何处理和创建训练数据,使用哪些功能,多久再训练一次模型,以及监控什么 在它如何帮助整个系统实现其目标的背景下。本书中的迭代框架使用了大量参考文献支持的实际案例研究。
本书的目的是考虑大型且具有挑战性的多阶段决策问题,这些问题原则上可以通过动态规划和*控制来解决,但它们的精确解决方案在计算上是难以处理的。本书讨论依赖于近似的解决方法,以产生具有足够性能的次优策略。这些方法统称为增强学习,也可以叫做近似动态规划和神经动态规划等。 本书的主题产生于*控制和人工智能思想的相互作用。本书的目的之一是探索这两个领域之间的共同边界,并架设一座具有任一领域背景的专业人士都可以访问的桥梁。
通过一系列的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。 在更新的第3版中,作者Aur lien G ron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。
书中按照游戏项目开发的流程编排内容,用一个综合实例贯穿全书,详细介绍了蓝图的应用、游戏基础逻辑的编写、UI的制作、AI的开发、动画的制作、C 开发等知识。
时间序列在现代生活中无处不在,它也是数据分析的重要对象。本书介绍时间序列分析的实用技巧,展示如何结合机器学习方法和传统的统计方法来分析各类时间序列数据,并提供Python示例和R示例。本书共有17章,首先概览时间序列分析的历史,然后介绍数据的获取、清洗、模拟和存储,接着关注可用于时间序列分析的建模技术,后探讨时间序列分析在几个常见领域中的应用。 本书适合与时间序列打交道的数据分析师、数据工程师、数据科学家及其他相关从业人员阅读。
本书系统地总结了作者自1994年以来关于无模型自适应控制理论和应用的研究成果。无模型自适应控制是仅利用受控系统的输入输出数据进行控制器的设计和分析,并能实现受控系统的参数自适应控制和结构自适应控制的一种理论与方法。主要内容包括:伪偏导数、伪梯度向量和广义Lipschitz条件等新概念;非线性系统的动态线性化方法;无模型自适应控制;无模型自适应预测控制;无模型迭代学习控制等控制方法;以及相应的稳定性分析和典型的实际应用。同时也包括:无模型自适应控制系统的对称相似结构构想、复杂互联系统的无模型自适应控制、无模型自适应控制与其它控制方法之间的模块化设计、无模型自适应控制的鲁棒性等若干重要问题。
ChatGPT和DALL-E这样的大语言模型(LLM)和扩散模型拥有前所未有的潜力。通过使用互联网上的公共文本和图像进行训练,这些模型能够为各种任务提供帮助。而且,随着准入门槛的显著降低,几乎任何开发人员都可以利用AI模型来解决以前不适合自动化的问题。 借助本书,你将在生成式人工智能方面打下坚实的基础,学会如何在实践中应用这些模型。在将大语言模型和扩散模型集成到工作流中时,大多数开发人员很难获得可用于自动化系统的可靠结果。作者James Phoenix和Mike Taylor展示了如何通过提示工程原则在生产过程中有效使用AI。
本书首先较为系统全面地介绍了高斯过程回归、高斯过程分类的基本理论及实现方法,通过丰富的算例和公开的源程序代码,读者可很容易地理解高斯过程原理并将其应用于自己的研究领域;然后,通过丰富的工程应用实例,将高斯过程机器学习方法应用于土木水利工程中边坡变形非线性时间序列预测、地下工程岩体非线性行为预测与识别、水利工程复杂系统状态预测与识别、结构可靠性分析及结构优化设计等领域。
本书作者Jeremy Howard和Sylvain Gugger是fastai的创建者,他们向你展示了如何使用fastai和PyTorch在各种任务上训练一个模型。你还将逐步深入了解深度学习理论,以便充分理解幕后的算法。 在计算机视觉、自然语言处理、表格型数据和协同过滤中训练模型 学习在实践中至关重要的*深度学习技术 通过了解深度学习模型的工作原理,提高准确性、速度和可靠性 了解如何将你的模型转化为Web应用 从头开始实现深度学习算法 考虑你的工作所带来的道德影响 从PyTorch联合创始人Soumith Chintala的前言中获得启示
本书向你展示了如何使用机器学习模型从图像中提取信息。ML工程师和数据科学家将学习成熟的ML技术来解决各种图像问题,包括分类、物体检测、自动编码器、图像生成、计数和字幕。本书很好地介绍了端到端的深度学习:创建数据集、数据预处理、模型设计、模型训练、评估、部署和可解释性。 Google工程师Valliappa Lakshmanan、Martin G?rner、Ryan Gillard为你展示了如何开发精准且可解释的计算机视觉ML模型,并使用强大的ML架构以灵活且可维护的方式将其投入大规模生产。 你将学习如何使用TensorFlow和Keras编写的模型进行设计、训练、评估和预测。
《直拉硅单晶生长过程建模与控制》源于作者在直拉硅单晶生长过程建模与控制领域十余年的研究心得与成果积累。 在对硅单晶生长工艺及制备理论进行全面论述的基础上,系统地介绍直拉硅单晶生长的基本原理和工艺过程以及热场?磁场等关键部件的设计理论与方法,研究影响硅单晶品质关键变量的检测问题和工程实现方法,提出全自动晶体生长控制系统的基本理论和控制技术。 《直拉硅单晶生长过程建模与控制》共8 章,即绪论?硅单晶生长原理?直拉硅单晶生长设备?直拉硅单晶热系统建模与设计实现?磁场环境下直拉硅单晶生长原理与实现?晶体生长过程关键变量的检测与信息处理?晶体生长过程控制原理与方法?全自动单晶炉自动控制系统设计与实现。 《直拉硅单晶生长过程建模与控制》的主要内容和研究成果均从理论和应用两方面予以详尽阐述,并