本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书系统地介绍模拟退火算法以及这一方法的并行实现和在优化、搜索、机器学习、统计物理中的应用。主要内容包括:模拟退火算法、并行摸拟退火算法、渐近收敛性、冷却进度表、模拟退火算法的应用、改进和变异、Boltzmann机及其存组合优化中的应用。
本书为“科学计算及其软件教学丛书”之一,从计算数学的要求出发,系统介绍国内外新发展的数值并行计算方法,并进行可扩性与复杂性分析。主要内容包括:并行计算基础理论,数值并行计算方法和并行计算的编程环境与编程实例。全书深入浅出,串行、并行算法相结合,并行算法与实际编程例子相结合,易于理解和掌握。每章附有习题,可供练习。
《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。
本书弱化了理论的严密证明,代之以简单的推导与方法的说明,加强了例题的示范作用,是浙江工业大学教学改革的系列教材之一。《BR》 本书主要介绍数值计算的基本理论与方法,内容包括数值计算引论、解线性方程组的直接法、解线性方程组的迭代法、非线性方程(组)的数值解法、插值法、逼近、数值积分与数值微分、常微分方程初值问题数值算法等。对于数学系的学生,教学内容可侧重算法的理论部分;对于一般工科的学生,教学内容可侧重算法的实用性和实验性部分。
全国竞赛组委会数年来先后出版的获奖作品选编不益于今后参赛学生开拓设计思路、提供撰写设计报告的参考,而且已成为很多高等学校信息电子类专业本科综合实验教学、课程设计乃至毕业设计的重要参考文献。全国电子设计竞赛组委会编著的《2011年全国电子设计竞赛获奖作品选编》仅编入了2011年全国电子设计竞赛中获得全国一等奖的部分作品,共计45篇,内容涉及8个竞赛题目,其中A题至E题为本科组竞赛题目,F题至H题为高职高专组竞赛题目。书中每篇作品均有“专家点评”。
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
An early experiment that conceives the basic idea of Monte Carlo pu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to pute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.
本书系统地介绍了粗糙集理论的基本内容与方法,力图概括国内外*成果。主要内容有:粗糙集的基本概念,粗糙计算方法,粗糙集的代数性质与粗糙逻辑,粗糙集的各种推广模型,粗糙集与其他处理不确定或不精确问题理论的联系以及不完备信息系统下的粗糙集方法。 本书可作为计算机科学、应用数学、自动控制、信息科学和管理工程等专业的高年级学生及研究生的教材,也可作为研究粗糙集理论与方法的科技人员的参考书。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。