为了充分利用煤炭资源,必须及时掌握煤质的变化规律。受测量方法和相关技术限制,传统的煤质分析技术已不能满足煤炭生产、加工和利用等过程的要求。煤质近红外光谱分析技术是一种新兴的煤质快速检测方法,可实现煤质全元素的快速在线分析。由于该技术是一种间接分析方法,预测结果的准确性主要依赖于建模数据及方法。鉴于此,针对煤样光谱数据存在的不稳定因素多、维数高、特征变异范围广等问题,本书基于机器学习方法,建立相应的煤质近红外光谱分析系统框架,并围绕影响其应用的四个关键问题展开研究,具体包括:建模样本优化筛选研究,煤样光谱数据的恢复处理研究,煤样光谱数据压缩处理研究,煤样光谱定性与定量分析方法研究。*后,据此构建煤质的快速在线分析模型并进行应用研究。书中所形成的研究成果,近红外光谱技术在煤质快