本书是作者2016~2019年间,在质心教育的生物竞赛课程研发与题库建设过程中的试题收集与汇总之作。根据全国生物学联赛考核的内容,分为生物化学、细胞生物学、微生物学、生物信息学、植物学、植物生理学、动物学、动物生理学、生态学、动物行为学、遗传学、分子生物学、进化生物学以及生物实验等14章。每章的习题数目从数十至数百不等,均配有详细的解析,个别较难知识点还附上了原始文献的出处。本书适合参加高中生物学联赛的考生学习,也可供生物学竞赛教练、高中生物教师参考。
上册:知识梳理。带你全面掌握高中生物竞赛知识点 下册:例题解析、针对训练。每章20例赛题解析,3100多题针对训练,满足参加高中生物竞赛学生的训练需求
《生物奥林匹克教程》是根据 国际生物学奥林匹克(IBO)纲要 和 全国中学生生物学竞赛纲要 的基本要求选材,由多年来从事生物 奥赛 培训的教练们集体编写,并通过集体讨论和专家审定。全书共分5篇,包括现代生物学基础理论、植物生物学、动物生物学、生物技术、生物与环境,每篇汇集内容紧密相关的章节。本次出版是该书的第三次修订,在原书的基础上增添了生物学前沿内容,对每个篇章后的自测题等进行大幅修改替换。
作为《全国中学生生物学联赛理论试卷解析(2001?2009)》《全国中学生生物学联赛理论试卷解析(2010?2018)》和《全国中学生生物学联赛理论试卷解析(2019?2021)》的延续,本书收集整理并详细解析了2022?2024年的全国高中生物学联赛理论试卷,其中2020年试卷包括A卷和B卷。书中的解析严谨、准确、巧妙,引用了诸多生物学研究的原始文献资料,具体内容涵盖细胞生物学、植物解剖和生理、动物解剖和生理、动物行为学、遗传学与进化、生态学、生物系统学等。本书适合参加高中生物学联赛的考生学习,也可供生物学竞赛教练、高中生物教师参考。
《新编高中生物竞赛培训教材》配合高中物理竞赛实验考试内容编写,按照内容分块剖析,旨在培养学生学习兴趣和动手操作的能力。
《全国中学生生物学联赛理论试卷解析》收集整理并详细解析了 2001 2018 年的全国中学生生物学联赛理论试卷,试卷按年份编排,分为上、下两册,每册各有 9 份试卷及其解析。本书为上册,包括 2001 2009 年的试卷和相应的解析。书中的解析严谨、准确、巧妙,引用了诸多外文原始资料,具体内容涵盖细胞生物学、植物解剖和生理、动物解剖和生理、动物行为学、遗传学与进化、生态学、生物系统学等。本书适合参加高中生物学联赛的考生学习,也可供生物学竞赛教练、高中生物教师参考。
本书针对以在规定时间内、快速准确地解决尽可能多的题目为目的的程序设计竞赛,以CCF推出的CSP-J中要求的知识为内容范围,即从零基础的C 语言介绍开始,包含三大控制结构、多重循环、递归、基础数据结构、动态规划和C 自带的STL库,对算法及其在相关问题中的应用,按照难易程度及其相互的关系,从易到难划分为多个主题进行介绍并进行技巧讲解。本书对每个主题由算法介绍和例题讲解两部分组成,书中的源代码均采用C 实现。本书适合所有对编程计算法有兴趣的初学者。
本书收集整理并详细解析了2019~2021年的全国高中生物学联赛理论试卷,其中2020年试卷包括A卷和B卷。书中的解析严谨、准确、巧妙,引用了诸多生物学研究的原始文献资料,具体内容涵盖细胞生物学、植物解剖和生理、动物解剖和生理、动物行为学、遗传学与进化、生态学、生物系统学等。 本书适合参加高中生物学联赛的考生学习,也可供生物学竞赛教练、高中生物教师参考。
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
本书是由从事数学奥林匹克教学和研究的专家们的精心创作,它以2007年国家集训队的测试题和国家队的训练题为主体,搜集了2006年8月至2007年7月间主要的数学竞赛及2007年国际数学奥林匹克试题和解答。另外,该书还附有2007年俄罗斯和美国数学奥林匹克的试题与解答。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学等候课的教师参考使用。
《高中数学竞赛专题讲座:平面几何解题思想与策略》重视平几题的解法思路的探索发现,非但特辟专章,给予探讨研究,多个例题的“分析”中,也力求有所体现。《高中数学竞赛专题讲座:平面几何解题思想与策略》的“分析”是与众不同的,平面几何新题真是千变万化、变幻无穷的,这也是它被确定为各届奥林匹竞赛必考的一类试题的一个背景,但在这千变背后不变的要素,就是基本图形,基本结论;种种解法与常用的探索分析方法。
本书的编写具有以下两个特点: 1.低起点,高目标。每讲内容以高考中、高档题和联赛一试试题为起点,逐步过渡到联赛二试、CMO、集训队 和IMO级水平的赛题,由易到难,“浅”入“深”出,注意基础与提高相结合,以适应不同层次的读者学习的需要。 2.内容全,选材新。书中的例题、习题来自外高考和各级数学竞赛,也有部分选自论文或自己改编、亲拟的新题。它们覆盖了竞赛中所需的绝大多数内容,以期让讯者对竞赛内容的进展轨迹和发展趋性、新颖性;即使是典型问题,也尽量给出独到的或新的解法,让读者领悟其中包含的数学思想方法和解题技巧,体验创新的无究魅力。对例题的解析,重在启迪思维、点拨方法,以培养学生科学的思维方法和创造性思维能力。
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
为便于“华杯赛”教练员,参赛选手以及广大青少年朋友学习和提高,“华杯赛”主试委员会的专家花了大量的时间和精力,对“华杯赛”历届赛题及题解又重新审定和分类,对内容进行了重要补充,对以前出版物中的错误及疏漏进行了认真的纠正或改写。新编的《培训教程》和以往出版的“华杯赛”的培训教材相比: 内容更加丰富,题目的知识涵盖更加全面。 题目表述更加准确,题解和答案更加简洁明了。 版面更加生动活泼,图形更加直观,翻阅更加方便自如。 阅读者的眼界更加开阔。 更加适合广大教练员、参赛选手和青少年朋友学习和使用。 本书共分七篇,除篇专门叙述了“华杯赛”的概况和命题的原则外,其他多篇都附有若干研究练习题,在本书后部还附有练习题的题解和提示。 “华杯赛”主试委员会汇集了一大批经验丰富的、以