本书主要针对心理学和相关专业的高年级本科生、研究生和科研人员,目的是使读者能够结合自己的研究,通过理论学习,深刻理解实验设计和方差分析原理,掌握方差分析的一些基本计算原理,解决实验设计和数据处理中的一些常见问题,并能够使用SPSs软件处理实验数据。 本书的许多内容在国外的教材中比较常见,但在国内还没有系统地介绍过。作者在美国伊利诺伊大学学习期间选修了多门实验设计和统计课程,理论的学习给作者留下了非常深刻的印象,作者也看到国内心理学界在实验设计和数据处理方面与国际水平之间有差距。作者和张亚旭副教授多年来从事语言认知研究。由于语言认知研究的复杂性,需要控制的变量繁多,因此,作者们一直非常关注实验设计和统计方面的研究进展。此外,在作者们自己的研究中,也尝试使用过各种实验设计和数据分析的
本书是与同济大学数学科学学院编写的《高等数学》(第八版)相配套的学习辅导书,由同济大学数学科学学院的教师编写。本书内容由两部分组成,第一部分是按《高等数学》(第八版)上册的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学统一考试数学试题选解,所选择的试题以工科门类为主,少量涉及经济学和管理学门类试题,并以数字资源形式,提供近年全国硕士研究生招生考试涉及《高等数学》上册的部分试题及参考答案。 本书对教材具有相对的独立性,可为学习高等数学的工科和其他非数学类专业学生以及复习高等数学准备报考硕士研究生的人员提供解题指导,也可供讲授高等数学的教师在备课和批改作业时参考。
本书是与同济大学数学科学学院编写的《高等数学》(第八版)相配套的学习辅导书,由同济大学数学科学学院的教师编写。本书内容由三部分组成,第一部分是按《高等数学》(第八版)下册的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学统一考试数学试题选解,所选择的试题以工学类为主,少量涉及经济学类试题;第三部分是同济大学高等数学试卷选编以及考题的参考解答。 本书对教材具有相对的独立性,可为学习高等数学的工科和其他非数学类专业学生以及复习高等数学准备报考硕士研究生的人员提供解题指导,也可供讲授高等数学的教师在备课和批改作业时参考。
本书为《概率论与数理统计教程》第三版(茆诗松等编)的配套辅导书。主教材共分8章43节,含有600多道习题,本书为每节内容缩写了 概要 ,对每道习题作了详细解答,有些习题还作了较为深入的讨论。此外,还补充了部分习题与解答,这些都有利于学生复习与提高。 阅读本书将对概率论与数理统计的独特思维方式和计算技巧有更深一步的理解,对教与学都会有很大帮助。本书可作为数学类专业的学生学习概率论与数理统计课程的参考书,也可作为参加硕士研究生入学考试的学生的学习辅导书。
统计学作为研究数据的一门科学,为使用者提供了一套获取数据、分析数据并从数据中得出结论的原则和方法。本书是《统计学(第8版)》配套学习指导书,里面包含学习指导、主要公式、选择题、教材练习题等内容。
本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
本书为宋天佑等编写的 十二五 普通高等教育*规划教材《无机化学》(第4版)的配套学习辅导书,共22章,1~11章为基础理论部分,12~22章为元素部分。各章包括三部分内容:*部分为典型的例题;第二部分为习题,题型有选择题、填空题、简答题和计算题,元素部分各章增加了 完成并配平化学反应方程式 和 分离、鉴别与制备 等题型;第三部分为习题参考答案,放在本书*后,对简答题和计算题都给出了较详尽的解答。本书内容丰富,涉及知识面广,难度较大的题占有一定比例。 本书可作为综合性大学、师范院校及其他理工类院校学生学习无机化学和普通化学课程的配套学习辅导书,也可作为报考研究生的复习参考书。
本书是与北京大学数学系编写的教材《高等代数(第五版)》配套的学习辅导书,是由教材作者亲自编写的。本书与教材的编排顺序一致,分为十章。每章中有内容提要、学习指导、习题与补充题的提示与解答,最后是总习题解答。本书的目的是帮助读者更好地学好教材的内容,要求读者切实按前言中提出的学习步骤和要求来学习,从而提高学习效果和解题能力,而不要把本书仅作为习题解答来使用。此外,学习指导部分加入了一些抽象概念(如线性相关、线性无关、向量组的秩等)的数学背景和来源等精彩内容,这在一般书中是少见的。 本书适合高等学校数学类专业作为高等代数课程的参考书,也可供广大读者学习时参考。
为帮助高校大学生更好地学习大学数学课程,我们根据《大学数学课程教学基本要求》及《全国硕士研究生招生考试数学考试大纲》编写了本套《大学数学精选精解习题集》,本书是其中的《线性代数精选精解700题》 。 全书共分六章,分别为:行列式、矩阵及其运算,向量,线性方程组,矩阵的特征值与特征向量,二次型,共700多道习题及解答,其中有50余道历届考研真题(在题目旁标注了 K )。本书深度融合信息技术,在解题前给出了本题所蕴含的知识点,读者可依知识点标号来获取知识点精讲视频;此外,还给出了90余个典型习题的精解视频(扫描书中二维码获取)。 本试卷适用于大学一至四年级学生,特别是有考研及数学竞赛需求,以及想迅速提高线性代数成绩的学生。
本书是与陈纪修、於崇华、金路编写的《数学分析(第三版)》相配套的学习辅导书,是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程 数学分析 项目的成果。全书内容包含了教材中全部习题的详细解答,也包括了补充习题资源中部分有难度的习题的解答提示。 本书不仅可作为高等学校学习数学分析课程的学生的学习参考书与讲授数学分析课程的教师的教学参考书,也可作为准备报考高等学校理工科各专业研究生的学生的复习参考书。
为帮助高校大学生更好地学习大学数学课程,我们根据《大学数学课程教学基本要求》及《全国硕士研究生招生考试数学考试大纲》编写了本套《大学数学习题集》,本书是其中的《概率论与数理统计精选精解500题》。 全书共分八章,分别为:随机事件及其概率,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,数理统计的基本概念,参数估计和假设检验,共500多道习题及解答,其中160余道历届考研真题(在边栏中标注了 K )。本书深度融合信息技术,在解题前给出了本题所蕴含的知识点,读者可依知识点标号来获取知识点精讲视频;此外,还给出了60余个典型习题的精解视频(扫描书中二维码获取)。 本书适用于大学一至四年级学生,特别是有考研及竞赛需求,以及想迅速提高概率论与数理统计成绩的学生。
本书是配套《微生物学》(高教 8 版)的学习辅导书,全书每章基本框架为考点综述、知识点串讲、名词术语、考研真题汇编、巩固习题演练和课内思考题解析。本书专为生物及相关专业本科生、研究生和教学人员编写,以《微生物学》为基础,帮助读者把握学习要点,对重点、难点展开讲解,并提供丰富习题及详细答案,供读者参考。 本书可供综合大学、师范院校及农、林院校的生物相关专业、医学院校的医学相关专业的本科生学习微生物学课程及应对各种考试使用棳也可供教师参考使用。
本书是与陈纪修、於崇华、金路编写的《数学分析》(第三版)相配套的学习辅导书,是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程 数学分析 项目的成果。全书内容包含了教材中全部习题的详细解答,也包括了补充习题资源中部分有难度的习题的解答提示。 本书不仅可作为高等学校学习数学分析课程的学生的学习参考书与讲授数学分析课程的教师的教学参考书,也可作为准备报考高等学校理工科各专业研究生的学生的复习参考书。
本书以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。本书中西合炉,将中国数学放在世界数学的背景中述说,展示了中国古代灿烂的数学文化,讴歌了中国现代数学家为实现数学强国之梦而奋斗的历程。 第四版增添了数字拓展内容,包括彩色图片、动画、慕课链接、习题等,进一步丰富了本书的内容,更生动直观地展示了数学的文化魅力,同时加强了本书的教学功能。对纸质版某些内容也进行了修改补充,以符合数学史研究的进展。全书重点突出,脉络分明,史料翔实,因而适合于综合性大学、师范类院校各专业的学生作为数学史课程的教材以及研究生选修数学史的参考用书,同时也可供广大数学
全国高等学校药学专业规划教材是目前国内历史*悠久、影响力*、发行量*的药学高等教育教材。本配套教材以主干教材的内容为核心依据,对每章应当掌握的知识进行归纳总结,对重点难点进行解析,并结合考研、执业药师考试等实际情况,列出相应题型的习题,供学生巩固练习
《教育心理学(第4版)》为报考心理学硕士研究生的指定用书,是大专院校心理专业的基本教材,现被列为华师大精品课程教材。自第三版发行以来,多次获奖。随着学科建设的发展,需要教材根据学科新进展作相应的修改,补充新的研究成果,以适应教育发展。
本书是浙江大学盛骤等编的《概率论与数理统计》(第五版)的配套学习辅导书,全书按照主教材的要求和章节顺序进行编排,与主教材习题一致。本书对教材的全部300多道题目都给出了解答,少数题目是一题多解,有些作了题目分析、解题思路分析和解答方法归纳,并指出易犯的错误,究其原因,澄清不正确的想法。通过本书的学习,可使读者提高分析问题和解题的能力,加深对基本内容的理解和掌握。 本书可作为理工科和其他非数学类专业的学生学习概率论与数理统计的参考书。
本书根据编者多年来教学实践修订而成,大体保持第三版取材的范围、结构和深度。全书共分七章。第一、二、三章分别介绍波动方程、热传导方程与调和方程的基本定解问题的适定性、求解方法及解的性质。在此基础上,第四、五、六、七章分别介绍二阶线性偏微分方程的分类与总结、一阶偏微分方程组、广义解与广义解、偏微分方程的数值解等。在部分章节附有扩展阅读内容,以帮助读者开阔视野与加深对正文内容的理解。此外,在每节后都安排了一定数量的习题,供读者进行练习。本书可作为高等学校数学类专业本科生数学物理方程课程的教材或教学参考书。