★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
《写给全人类的数学魔法书》是一本能真正提高你的数学能力、快速拯救考卷分数的 数学宝典 。全书只讲解了10种基本解题思路,却足够你游刃有余地应对各种初高中数学难题,甚至连那些冷僻的高考试题你也可以轻松拿下。更重要的是,你将通过这10种解题思路,将所有的数学知识融会贯通,形成自己的学习方法, 从而 对数学开窍! 不要再死记硬背枯燥的数学公式和概念了。这本书将完全颠覆你自以为正确的学习方法,让你真正会学数学,爱上数学!
《哆啦A梦》中很巧妙地融入了爱因斯坦的理论?人类身上蕴含着对数?其实,我们的身边充满了数学原理。 数学是人类倾注心血凝结而成的智慧结晶,是*宝贵的知识财富。如此有趣的故事,却被教科书讲述得无聊至极,这实在是令人感到万分遗憾。 本书是关于作者选出的数学家、物理学家们的故事。它其实更是一本将年轻人领入数学世界的全明星阵容介绍:纳皮尔、牛顿、爱因斯坦、仁科芳雄、拉马努金 他们的人生和伟绩,曾经深深地触动了无数爱好数学的心灵。 数学这个故事,此时此刻也正产生新的发现,这是一个 Never Ending Story(永无结局的故事) 。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
《九章算术》是人类科学史上应用数学的 算经之首 ,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》提出正负数的概念,特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出 盈不足术 ,即用两次假设,可以把一般方程式化为盈不足问题,用 盈不足术 求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为 契丹算法 (即 中国算法 )。 《九章算术》系统叙述了分数的约分、通分和四则运算法则,提出了 线性方程组 的概念,并系统地总结了它
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末由科学出版社引进出版后,曾在国内引起很大反响,直接影响了众多的科普工作者。本书根据原书最新版进行了修订,书中以生动的语言介绍了20世纪以来科学中的一些重大进展。先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯胆的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂,幽默生动,深入浅出,适合中等以上文化水平的广大读者阅读。
个完整的科学的宇宙论和科学理论体系, 奠定科学素养 《自然哲学之数学原理》是人类掌握的个完整的科学的宇宙论和科学理论体系,其影响遍布了经典自然科学的所有领域。牛顿总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律。全书分为四个部分,首先对书中的定义和运动定律做了说明,从物体的各种运动形式和在阻滞介质中摆体的运动,到宇宙星体的运动详细论述。这本书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。
《神奇的数学:牛津教授给青少年的讲座》是作者在一系列针对青少年的数学普及讲座内容基础上汇集整理的一本数学科普书,介绍了一些数学中很有神秘色彩的知识,内容浅显易懂,语言生动活泼,很容易激发读者尤其是青少年读者了解数学的兴趣。 《神奇的数学:牛津教授给青少年的讲座》适合所有对数学知识感兴趣的读者。
本书主要涉及大一上学期要学的一元微积分,书中从高中阶段十分熟悉的数列出发,引出数列极限的概念,进而引出函数极限的定义,并由此引申出导数、微分、积分,其间穿插讲解无穷小量、无穷大量、函数凹凸性、极值与最值等内容,并简单介绍了各类中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)、洛必达法则、泰勒公式等常用定理和公式。全书语言幽默,文风轻快,用较短的篇幅将微积分入门的基础概念生动地展示出来。 这是为大一新生而写的数学书,主要有以下特点: 1.尽量由中学数学知识引出大学数学的内容; 2.不面面俱到,不追求绝对严谨; 3.通俗易懂, 保姆级 的讲解; 4.借用国学精粹引入数学概念; 5.适当讲述数学典故,激发学习兴趣; 6.穿插一些数学幽默小故事,缓解学习的紧张感; 7.让数学与生活挂钩; 8.玩梗,也
你会因为进行简单的计算而对数学感到厌烦吗?你会随着数学学习的深入,因为不知道如何解答而对数学学习产生畏难情绪吗?你会因为感到学习困难而认为数学没有意思,认为数学就是枯燥无味的吗? 本书会帮你解决这些问题,颠覆你对数学学习的印象。 本书共27个主题,作者将每道题目的第1问设计成稍微思考,或者看一下 解题方法 便可明白,从第2问开始设计成能够轻松 挑战 的形式。让读者保持一种节奏良好的游戏感。 由浅入深,由简单到困难,把题目设置成不同的阶梯挑战,慢慢建立数学学习信心;不同的解题角度,打开你的数学学习思路,只有你想不到没有你做不到,让你越做越有趣,彻底爱上数学学习。 快点来进行挑战吧,每天一个主题,获得 智慧带来的喜悦 。
《从一到无穷大》是伽莫夫的代表之作,也是科普写作领域的经典。 全书分为四部分,涵盖了数学、物理学、生物学、化学等多学科内容。作为一本优秀的通识科普读本,伽莫夫以其深厚的科学素养和精湛的写作技巧,深入浅出地向读者讲述各领域内的经典理论与重要的研究成果,并将其融会贯通。如,书中讨论了数论、弯曲空间与引力之谜、四维时空特性、基因、原子与太阳系间相似的结构模型,以及恒星的诞生与死亡等诸多主题。通过这些有趣的事实和理论,从微观到宏观,为读者描述了一幅全面的宇宙图景。 作为富有启发与教育意义的科普读物,本书适合对科学怀有信仰与憧憬的人,尤其是青少年。
本书通过作者的生活经历、思考和爱好,以及对艺术的理解,从一个全新的角度谈音乐和数学的关系。主要内容包括:历史上的音乐数学,声学,乐理、乐器、曲风和数学的关系,以及数学和计算机音乐。本书较为全面、深入地展示数学和音乐关系那吸引人的神奇。该书涉及大量的数学音乐,其中也包括非常动听的AI谱曲。这本书视角之独特、内容之新颖,可使不少人文艺鉴赏的同时,改变对数学枯燥的偏见,必将起到积极的作用。本书适合有高中以上数学基础的音乐爱好者。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的*进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而*美的数学(the best mathematics)则如文学 它将故事栩
本书集结了丘成桐先生近半个世纪以来探讨数学和人文教育的系列文章,呈现了一位天才数学大师沟通数理与人文的努力与实践,透射出其追求真与美的数学观、人生观,一字一句皆饱含着对真理的热爱、对美的追求以及对祖国科学事业的殷殷之情。 丘成桐在书中分享了毕生研究数学、传授数学的经历和经验,讲述了世界范围内数学家群星闪耀的历史传奇,揭秘了 卡拉比-丘流形 的诞生历程和几何奥妙,也有大量篇幅谈及中国教育的现状和问题。 读者可在书中了解这位誉满世界的杰出数学大师的治学心迹与家国情怀,感受天才头脑的思维活力和深厚的人文底蕴,见证他追寻学问的理性以及对人才教育的计之深远。
在《x的奇幻之旅》中,*数学家、《纽约时报》专栏作者史蒂夫?斯托加茨,引领我们踏上一段领略伟大的数学思想的赏心悦目之旅。沿途中你会看到数学如何与文学、哲学、法律、医学、艺术、商业彼此交融,甚至流行文化也能以我们意想不到的方式和数学共舞。
麦克斯韦方程组以一种近乎完美的方式统一了电和磁,并预言光就是一种电磁波,这是物理学家在统一之路上的巨大进步。很多人都知道麦克斯韦方程组,知道它极尽优美,但是能看懂这组方程的人却不多,因为它需要用到微积分,并不像许多方程那样简单直观。 因此,《什么是麦克斯韦方程组》会依然延续「长尾科普系列」的风格,继续用通俗的语言和缜密的逻辑将麦克斯韦方程组的前前后后都讲清楚,让不懂微积分的中小学生也能轻松读懂这组伟大的方程。 全书行文流畅,语言生动,图文并茂,可读性强。是一部不可多得的原创科普佳作。 强烈推荐给对世界充满好奇心的8-120岁的 少年 。
本书将两千多年的数学发展历程融为十二章内容,每章都包含了三个基本组成部分,即历史背景、人物传记以及在这些 数学杰作 中所表现出的创造性。作者精心挑选了一些杰出的数学家及其所创造的伟大定理,如欧几里得、阿基米德、牛顿和欧拉。而这一个个伟大的定理,不仅串起了历史的年轮,更是串起了数学这门学科所涵盖的各个深邃而不乏实用性的领域。当然,这不是一本典型的数学教材,而是一本大众读物,它让热爱数学的人体会到绝处逢生的喜悦,让讨厌数学的人从此爱上数学。
全书是系列丛书《奇妙的数学折纸》中的第1册。全书介绍了10个数学折纸,从基本纸质制作教程开始,并配有数学原理的解析,书中的每一个折纸作品都分解为4~5个大板块:折纸教程、如何玩、对教师的建议、思考题和数学内涵解读。从怎么折,到所涉及的数学原理都讲解得很详细。书中配有折纸阶段以及如何玩的视频,让书中难点可以用更直观和动态的视频来解疑。对小学和初中年龄段的学生来说是一种寓教于乐的新型科普类书籍。也适合学校作为教辅书籍拓展学生和老师的视野。