一本书如果没有作者自己的观点,而只是知识的堆叠,那么这类书是没有太大价值的。尤其在当前网络发达的时代,几乎任何概念和知识点都可以从网络上查到。但是有一点你很难查到,那就是统计分析的思路和观点。比如,你可以很容易地在网上查到什么是线性回归,但你却查不到怎么 做 线性回归分析,在你遇到实际数据时仍然不知道如何分析。在《白话统计》中,你可以获得这些思路和观点。尽管这些观点未必是所有人都认可的,但根据笔者多年的分析经验,它们在实践中通常是奏效的。《白话统计》凝结了作者十多年来对统计分析的理解,对各种方法的介绍采用全新的理念和思路,不再是介绍方法本身,而是试图将各种方法之间的联系阐述清楚;不再是介绍方法如何计算出结果,而是尽量说明方法背后的思想。当然,本书同时提供了如何实现结果的软件(
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
《高性能MySQL(第3版)》是MySQL 领域的极佳之作,拥有广泛的影响力。第4版更新了大量的内容,全书共分为16章和6 个附录,内容涵盖MySQL架构和历史,基准测试和性能剖析,数据库软硬件性能优化,复制、备份和恢复,高可用与高可扩展性,以及云端的MySQL和MySQL相关工具等方面的内容。每一章都是相对独立的主题,读者可以有选择性地单独阅读。《高性能MySQL(第4版)》不但适合数据库管理员(DBA)阅读,也适合开发人员参考学习。不管是数据库新手还是专家,相信都能从本书有所收获。
《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容,完全按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
内容简介商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项技能。 作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。 本书分为6 篇,共17 章,其中第1 篇是概念篇,讲述商业分析的基本概念;第2 篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3 篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4 篇是高阶篇,讲述如何应对复杂的商业难题;第5 篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6 篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。 本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
本书是基于作者多年的教学与实践撰写的,重点介绍PostgreSQL的核心原理与体系架构,涉及开发、运维、管理与架构等内容。 本书共12章,涉及以下几方面内容:PostgreSQL基础,安装与配置PostgreSQL,管理数据库与数据库实例,管理数据库对象,并行查询,事务与并发控制,应用程序开发,管理数据库安全,备份与恢复,监控、诊断与优化数据库,PostgreSQL的高可用架构,以及从Oracle迁移到PostgreSQL。
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
本书主要介绍基于GraphPad Prism 9 的学术图表绘制方法。本书以软件所定义的8 种数据表为纲,按照 数据录入 数据分析 图表生成与美化 的顺序,结合科研实例,使用t 检验、方差分析、生存分析和主成分分析等相关统计分析方法,介绍了散点图、气泡图、柱状图、线图、饼图、面积图等常见学术图表的绘制和美化方法。同时本书提炼了学术图表绘制的一般流程、配色方法及GraphPad Prism 绘图的进阶技巧,兼顾学术图表绘制的实用性和美观性,适用于需要绘制学术图表的高校学生和科研人员。
本书是一本全面关注企业数据标准化方面的工具书,主要分为5 篇。 第1 篇介绍了数据标准化是数据治理的基础,包括数据标准化与数据治理的关系,以及数据标准化主要内容、本书阅读导引。 第2 篇介绍了数据标准化框架体系,包括架构类数据标准、对象类数据标准、基础类数据标准。 第3 篇介绍了数据标准化实施流程与方法,包括建立数据标准化保障机制、现状分析及评估、技术平台和工具、数据标准化关键域实施。 第4 篇介绍了数据标准化评价,包括数据标准化评价方法、数据标准成熟度评价、数据标准化成熟度评价流程。 第5 篇介绍了数据标准化案例,包括油气行业、多元化集团、装备制造行业、核电行业、汽车行业、金融行业、政务行业、互联网行业等行业的数据治理案例,为读者提供了专业、丰富、可信的数据治理实施范例。 本书是工业大数据应
如今企业数字化转型和“互联网+”已成为热门话题。那么,如何开展转型工作,让具体工作可以落到实处呢?由于数字化转型工作的复杂性,很多企业管理者感觉无从下手,市面上也十分缺乏相关的指引和资料。本书介绍的企业架构方法以及多个领先企业和行业数字化案例,可以使读者系统地掌握数字化转型的理论和落地方法,帮助企业完成生死攸关的转型变革。本书回答了“什么是数字经济,什么是数字化转型,什么是数字化转型的关键要素”等问题,并在转型方法方面介绍了数字化企业架构的业务架构、流程、组织、IT架构,详细阐述了金融、零售、医疗、物联网、AI、智能制造等方面近期新的商业模式和技术发展。本书打开了一扇新的数字化转型方法之门,是企业管理者、信息化从业者以及管理咨询服务机构、IT服务公司从业人员、大专院校师生很好的参考资
数字经济已成为各国经济增长的新动能,并上升为国家发展战略,各国政府和人民对数据跨境流动安全问题的关注与日俱增。本书系统介绍了全球数据跨境规则的产生背景及其发展演变的脉络,重点分析了全球主要国家和地区数据跨境治理规则的内容和相互之间的异同,特别介绍了欧盟、美国话语权下的数据跨境流动规则及规则间的弥合,也介绍了其他国际性文件及十余个重点国家和地区的立法现状,同时展望了全球数据跨境规则的未来走向,在此基础上对我国的数据跨境流动治理规则现状进行梳理,并对其实施与完善提出了相关建议。本书语言平实易读,主要以法律法规、执法部门的解释性指南、判决书等一手资料作为参考,介绍分析了国内外立法现状和法律实践。
本书以数据思维为主题,以数据分析全流程为主线,融合了与数据思维相关的编程语言、统计学基础及案例分析等内容,全书分为4 篇,囊括了数据思维的概念和培养方法、数据来源及体系建设、数据分析三大思维方式及用户流失、用户转化实战等共11 章的内容。本书囊括了数据分析中常用的分析方法,包括经典的海盗(AARRR)模型、麦肯锡的MECE 模型、逻辑树、漏斗分析、路径分析、对比分析、A/B 试验、RFM 模型、K-Means 算法、5W2H 等分析方法,还包括各类方法的实践案例及Python 实操项目。可以说本书是数据分析方法论与统计学知识、编程语言及应用案例的完美结合。 本书适合工作了1~3 年的初级数据分析师;已经掌握了数据分析工具,需要培养数据思维的转行人员;数据科学行业的人力专家和猎头等。
本书在梳理和反思数字化转型和数字治理现状的基础上,以马克思主义政治经济学中有关生产力与生产关系的经典理论为指导,将数字化转型与数字治理之间的互动关系作为切入点,详细解读了数字经济时代的数字化转型和数字治理挑战,提出了数字化转型和数字治理的创新思路,以期走出一条科学思想与人性光辉共同闪耀的数字繁荣之路。其中,在数字化转型方面,基于"技术-社会”互构视角提出了"技术动力”与"结构调适”的数字化转型机制;在数字治理方面,基于当前的治理挑战和治理需求提出了数字治理"三位一体”体系框架。 此外,本书还对数字化转型和数字治理的未来发展进行了展望。
R语言在心理语言学研究中的应用已经有相当长的历史,但什么情况下要对数据进行怎样的处理,模型应该如何构建,得到结果后应该如何科学地读取和规范地报告等问题仍未得到很好的解决,本书意在解决这些问题。 本书首先介绍了R语言基础知识、基本统计思路和初步数据整理,对经由真实眼动研究得到的数据进行清理、转换和描述性统计,以及数据可视化等操作,然后介绍了线性混合模型和最大随机效应,结果解释、整理和提升,power分析和Bayes分析在R语言中的实现;接着介绍了线性混合模型和重复测量方差分析结果的比较;最后介绍了多种眼动指标整理的方法。
本书的主要内容是作者及其合作者在复杂数据模型这一领域近些年的研究成果, 以及相关的最新进展. 全书共 6 章. 第 1 章简要介绍几类复杂数据模型和 bootstrap 等预备知识和相关研究问题. 第 2~6 章, 系统讨论各种复杂数据统计推断中的 bootstrap 基本理论、方法及其应用, 包括 Behrens-Fisher问题、异方差回归模型、异方差 ANOVA 和 MANOVA 模型、混合效应模型及高维数据分析中的 bootstrap 统计推断.
本书介绍了数据工程的基本概念和理论基础,围绕数据资源建设的规划和管理问题,介绍数据资源规划和管理的概念、特征、作用和功能,系统介绍了数据资源规划理论的发展过程、核心思想基础、主流方法体系和具体实施步骤,以及数据资源管理涉及的治理、质量、集成等理论知识、支撑平台、关键技术和主流工具。本书内容划分为数据工程基础篇、数据资源规划篇、数据资源管理篇三个部分,其中数据工程基础篇涵盖数据工程概述、数据标准、数据模型等内容,数据资源规划篇涵盖数据资源规划理论、规划方法、需求分析、模型构建、实践与工具等内容,数据资源管理篇涵盖数据治理、数据质量管理、数据集成、数据中台等内容。 本书既可以作为高等院校信息管理与信息系统、信息资源管理、大数据工程以及计算机信息管理等专业本科生的教材,还
数据清洗是大数据领域不可缺少的环节,用来发现并纠正数据中可能存在的错误,针对数据审查过程中发现的错误值、缺失值、异常值、可疑数据,选用适当方法进行 清理 ,使 脏 数据变为 干净 数据。本书共分为8章:第1章主要介绍数据清洗的概念、任务和流程,数据标准化概念及数据仓库技术等;第2章主要介绍Windows和类UNIX操作系统下的数据常规格式、数据编码及数据类型转换等;第3章介绍ETL概念、数据清洗的技术路线、ETL工具及ETL子系统等;第4章介绍Excel、Kettle、OpenRefine、DataWrangler和Hawk的安装及使用等;第5章介绍Kettle下文本文件抽取、Web数据抽取、数据库数据抽取及增量数据抽取等;第6章介绍数据清洗步骤、数据检验、数据错误处理、数据质量评估及数据加载;第7章介绍网页结构,利用网络爬虫技术进行数据采集,利用JavaScript技术进行行为日志数据采集
“空间数据库”是地理信息科学、测绘工程等相关专业的必修课程,而纵观目前有关空间数据库及其实验指导的教材,内容多为理论知识,操作性有待加强,对于本科生而言学习起来较为吃力。因此,陈鲁皖、王卫红主编的《空间数据库实验指导教程》在编写过程中本着通俗易懂、详细可行的原则,对于关系数据库建库及其管理系统开发、空间数据库建库及其管理系统开发的各个流程环节进行了翔实的描述,并使用大量的图片进行说明,步骤清晰、层次分明,具有很强的可操作性。本书既可作为地理信息科学和测绘工程本科阶段的实验指导书,也可作为交通工程、城市规划等相关专业的辅导教材,还可作为相关部门工作人员的自学教材。
数据包络分析(DEA)方法是一种应用广泛的效率评价方法。本书结合作者近年来的研究成果,将数据包络分析方法进行扩展与集成,使之成为一种开展系统综合评价的有效方法。本书重点介绍DEA公共权重配置和DMU完全排序方法、DEA中DMU结构分析和效率分解方法、不确定信息条件下的鲁棒DEA方法、径向和非径向DEA集成效率测度方法、基于DEA的资源配置和目标分解方法等DEA领域的前沿建模方法。同时本书还介绍了DEA方法在能源与环境绩效评价、银行和供应链效率分析中的应用。
本书试图较全面地介绍大数据技术的基本原理和方法,包括以统计模型为主的各类数据模型以及它们的计算方法,同时还将介绍这些方法在一些领域(如人工智能)中的应用。
本书首先基于结构化国际科技资源信息数据库及非结构化国际科技资源信息,研究国际科技资源信息的数据抽取技术、学科与技术分类及数据库构建方法;其次,基于文献计量、专利计量、文本挖掘、研究价值图谱、技术路线图方法,研究构建国际科技资源监测分析方法和模型;再次,基于聚类分析、社会网络分析、地理信息系统等方法,研究国际科技资源信息监测分析的可视化方法和模型;后,介绍了国际科技合作资源监测系统和国际科技资源监测地理信息系统的开发及应用。
《经济学人》杂志年度推荐的三大可视化图书之一 《大数据》作者、《经济学人》大数据主编肯尼思·库克耶倾情推荐,称赞其为“关于数据呈现的思考和方式的颠覆之作” 亚马逊数据和信息可视化类图书排名第3位 畅销书《鲜活的数据》作者近期新力作及姐妹篇 第一本系统讲述数据可视化过程的的普及图书 这是一本教我们如何制作完美可视化图表,挖掘大数据背后意义的书。作者认为,可视化是一种媒介,向我们揭示了数据背后的故事。他循序渐进、深入浅出地道出了数据可视化的步骤和思想。本书让我们知道了如何理解数据可视化,如何探索数据的模式和寻找数据间的关联,如何选择适合自己的数据和目的的可视化方式,有哪些我们可以利用的可视化工具以及这些工具各有怎样的利弊。 作者给我们提供了丰富的可视化信息以及查看、探索数据的多元视角