《华为数据之道》 《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在优选170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细
了解数据结构与算法是透彻理解计算机科学的前提。随着Python日益广泛的应用,Python程序员需要实现与传统的面向对象编程语言相似的数据结构与算法。本书是用Python描述数据结构与算法的开山之作,汇聚了作者多年的实战经验,向读者透彻讲解在Python环境下,如何通过一系列存储机制有效地实现各类算法。通过本书,读者将深刻理解Python数据结构、递归、搜索、排序、树与图的应用,等等。这一版重写了书中的示例代码,并对诸多内容做了修正。
《深入浅出数据分析》以类似"章回小说”的活泼形式,生动地向读者展现出色的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、优化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、相关数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。
《零基础学Oracle》是针对零基础编程学习者研发的Oracle入门教程。从初学者角度出发,通过通俗易懂的语言、流行有趣的实例,详细地介绍了使用Oracle 11g进行数据管理的各方面技术。全书共分16章,包括Oracle 11g概述、Oracle管理工具、SQL*Plus命令、数据表操作、SQL查询基础、SQL查询进阶、子查询及常用系统函数、PL/SQL语言编程、游标以及企业人事管理系统等。书中所有知识都结合具体实例进行讲解,涉及的程序代码给出了详细的注释,可以使读者轻松领会Oracle 11g数据库管理的精髓,快速提高数据库管理技能。本书通过大量实例及一个完整项目案例,帮助读者更好地巩固所学知识,提升能力;随书附赠的《小白实战手册》中给出了3个实用数据库、数据表的创建、操作和系统维护流程,力求让学习者能学以致用,真正获得数据库管理经验;附赠的光盘中给出了视频讲解
商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项推荐技能。作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。本书分为6篇,共17章,其中第1篇是概念篇,讲述商业分析的基本概念;第2篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4篇是高阶篇,讲述如何应对复杂的商业难题;第5篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
无论是审计师还是会计师,在工作中都会遇到如何获取数据、分析数据的问题,甚至有时想制作一些自动化的工具或利用编程技巧来辅助完成重复性的工作。本书正是从审计师、会计师的实际工作场景出发,讲解IT审计的学习技巧、SQL基础与实战技巧、Python基础与Python实战技巧,以及数据可视化技巧等。
本书提供了学习大数据技术及架构的一站式解决方案,覆盖了大数据生态圈中的完整技术体系,包括数据采集、数据存储、分布式资源管理、数据计算、数据分析、任务调度、数据检索、大数据底层基础技术和大数据集群安装与管理。 本书还介绍了多个企业级大数据应用案例(包括海量数据采集、“双十一”数据大屏、海量数据全文搜索系统等)和大数据平台架构案例(包括离线数据仓库架构、实时数据仓库架构、批流一体化数据仓库架构、数据中台架构、直播大数据平台架构、电商大数据平台架构等),可以帮助读者从全局角度理解大数据。 在本书中,技术内容基本上都是从零讲起的,结合原理和架构,以“图解+实战”的形式帮助读者轻松理解复杂的知识。 本书适合对大数据感兴趣的开发人员。无论读者是否接触过大数据开发,只要具备一定的Java开发
这是一本关于如何更好、更有效地进行数据可视化的书。本书分为3个部分。第1部分是创建有效可视化的通用指导原则,我们将了解受众的重要性,以及思考哪类图表能更好地契合他们的需求。第2部分是本书的核心部分,我们将定义和讨论80多张图表,这些图表分为八大类:比较、时间、分布、地缘、关系、构成、定性和表格。我们将看到各类图表是如何起作用的,以及它们的优缺点。第3部分整合了两块内容,一是构建数据可视化样式指南,二是如何结合不同的经验对图表进行重新设计。本书将指导你选择最适合展示相关数据的图表,并有效地传递你想传达的信息。
本书是热销书《SQL基础教程》的作者MICK为志在向中级进阶的数据库工程师编写的一本SQL技能提升指南。全书可分为两大部分。第一部分介绍了SQL语言不同寻常的使用技巧,带领读者重新认识CASE表达式、窗口函数、自连接、EXISTS谓词、HAVING子句、外连接、行间比较、集合运算、数列处理等SQL常用技术,发掘它们的新用法。这部分不仅穿插讲解了这些技巧背后的逻辑和相关知识,而且辅以丰富的示例程序,旨在帮助读者从面向过程的思维方式转换为面向集合的思维方式。第二部分介绍了关系数据库的发展史,并从集合论和逻辑学的角度讲述了SQL和关系模型的理论基础,旨在帮助读者加深对SQL语言和关系数据库的理解。此外,本书很多节的末尾设置有练习题,并在书末提供了解答,方便读者检验自己对书中知识点的掌握程度。本书适合具有半年以上SQL使用经验、已掌握S
Python是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3篇。第1篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2篇介绍预测算法,该部分包含多元回归分析、复杂
本书详细介绍了Oracle、MySQL、PostgreSQL、SQL Server、DB2等各种关系数据库的SQL查询技巧和一些基础的SQL查询语句,并且通过短小精悍的实例,不仅讲解了如何插入、更新和删除数据,还介绍了如何检索记录、为查询结果排序、同时操作多张数据库表、查询元数据、处理涉及字符串和数值的操作、根据时间数据和日期数据进行运算、执行层次查询和区间查询等。随着多种SQL实现大量采用窗口函数,本书第2版针对相关实例做了优化,还新增了为数据科学家和算法工程师量身定制的实例。本书适合数据分析师、数据库管理员以及与SQL打交道的数据科学家和算法工程师阅读。
本书共13章,主要内容涵盖Python语法及数据分析方法。第1章主要介绍数据分析的概念,使读者有一个大致的印象,并简单介绍本书频繁使用的Python的5个第三方库。第2章主要做一些准备工作,手把手带读者搭建Python环境,包括Python 3.7.6的安装和pip的安装。第3章介绍Python编程基础。第4章到第7章介绍使用Python进行简单数据分析的基础库,包括NumPy、Pandas和Matplotlib库,并介绍使用正则表达式处理数据的方法。第8章到第13章属于进阶内容,但也是Python数据分析的基础,结合机器学习介绍一些常见的用于数据分析的机器学习算法及常用的数学模型。
本书分为以下几个主要部分:第1-3章介绍方法和技术。在这些章节中,我们描述了一种性能调优方法。还提供了一些关于MongoDB架构和MongoDB提供的用于调查、监控和诊断MongoDB性能的工具的背景知识。第4章和第5章介绍应用程序和数据库设计。第6-10章介绍应用程序代码的优化。第11-14章讨论MongoDB服务器及其运行硬件的优化。
本书是一本介绍数据分析相关算法的学习指南,主要包括数据分析及数据挖掘相关概念介绍、数据思维及各种数据分析算法的原理及实现方法。本书的每个数据分析算法都介绍了数学原理、Python代码实现以及实战案例,内容丰富、容易理解。本书共9章,第1章介绍了数据挖掘与数据分析、机器学习之间的关系;第2章介绍了数据分析人员应该具备的数据思维,包括数据思维认知、数据挖掘“定律”;第3~9章介绍了各种数据分析算法的原理、实现方法及实战案例,其中包括逻辑回归、决策树、朴素贝叶斯、聚类分析、关联规划、人工神经网络、集成学习。本书适合从事数据分析工作的读者自学,也可作为产品经理、运营人员、市场人员和对数据分析感兴趣的读者的参考用书。
本书全面介绍了预测性分析相关方法,不仅直观地阐述了相关概念,还给出了现实的示例问题和真实的案例研究—包括从失败项目获得的经验教训。本书理论和实践内容相对平衡,便于读者加深理解。全书共9章,外加一个附录。第1章为分析导论,第2章为预测性分析和数据挖掘导论,第3章介绍预测性分析的标准流程,第4章介绍预测性分析的数据和方法,第5章介绍预测性分析算法,第6章探讨预测性建模中的高阶主题,第7章介绍文本分析、主题建模和情感分析,第8章介绍预测性分析使用的大数据,第9章介绍深度学习和认知计算,附录展望了商业分析和数据科学工具的前景。本书适合计算机科学、数据科学和商业分析领域的相关从业人员阅读。
本书介绍了如何使用 Python 实现企业级的大数据全栈式开发、设计和编程工作,涉及的知识点包括数据架构整体设计、数据源和数据采集、数据同步、消息队列、关系数据库、NoSQL 数据库、批处理、流处理、图计算、人工智能、数据产品开发。 本书既深入浅出地介绍了不同技术组件的基本原理,又通过详细对比介绍了如何根据不同场景选择很好实践技术方案,并通过代码实操帮助读者快速掌握常用技术的应用过程,最后通过项目案例介绍了如何将所学知识应用于实际业务场景中。
本书通过对多个实例的演示与讲解,详细介绍了Excel的近期新功能组件Power Query在数据查询与数据转换方面的主要功能。全书共分为8章,主要包括Power Query编辑器的基本功能,常见数据类型的查询与导入,对原始数据进行合并、拆分、计算、转换等数据整理操作,Power Query中M公式的编写方法等。本书语言风趣,专注于具体的应用场景,而不拘泥于功能本身,图示清晰、可操作性强且便于查阅,能有效帮助读者提高Excel的使用水平,提升工作效率。本书主要面向Excel的初、中级用户以及IT技术人员,对于Excel高级用户也具有一定的参考价值。
《数据库系统概念》是数据库系统方面的经典教材之一,本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,使其体系更符合国内本科数据库课程教学要求。本书第1章概述数据库系统,第一部分(包括第2~6章)讲述关系语言的基本概念,第二部分(包括第7~9章)介绍数据库设计与应用程序开发技术,第三部分(包括第10~14章)介绍数据库管理系统实现的核心技术,第四部分(包括第15~17章)介绍大数据分析、区块链数据库、高级应用开发等高级话题。 本书既可作为高等院校计算机及相关专业本科生的数据库课程教材,也可供数据库领域的技术人员参考。
数据是自然和生命的一种表现形式。古人结绳计数、勒石记事,客观地记录了人类的成长和社会的发展。今天,大数据时代,数据洪流激荡着时代的发展。本书穿越数据的前世今生,回顾了数字和数据的基本演进过程,从数学家借助概率发现数据分布的秘密到量化看世界引领大数据思维;从虚拟现实、数据孪生、数据世界的规则深入探究元宇宙的数据本质,展现即将跟随元宇宙迸发的数据活力。本书能给读者以启发和参考,一起走向数字时代的未来。
《基于大数据卫勤循证决策研究》旨在完善大数据理论和方法在“平战非”卫勤循证决策中的应用,应用“卫勤决策支持”全国重点实验室中的调研、建模与干预实验技术,将大数据引人循证决策,改变了证据分析方法,实现了数据信息实时化、全面化、科学化,从而为决策者提供快速、准确的大数据支持,提升了循证决策效率与质量,为后期“平时、战时、非战争”决策提供了坚实的理论依据。
本书是纳迪赫和雪莉二人对数据可视化创新、创意实践的总结和反思。全书12个主题作品、24篇精彩故事,从奥运会历史到美国总统和欧洲王室轶事,从暑期热门电影到星座神话、女性传奇――二人精诚合作,探索了可视化叙事的多种技术和形态,突破了数据可视化工具属性和美学表达之间的界限。书中内容翔实,见解独到深厚,通过对项目背景、创作历程和关键方案的阐述,揭示了数据可视化创意编程的思维方式和技术路线。本书非常适合那些对数据可视化和信息设计感兴趣的人或业内相关人士,尤其适合那些欣赏数据叙事之美,并期待借此提升自身业务能力的人阅读。
在当今时代,金融、数学和编程是有着内在联系的。本书提供了针对这些学科的相关基础内容,并介绍了在计算金融世界中入门所需的主要工具。本书的主要内容有:运用数学知识,学习金融理论和Python编程的基础。学习在计算金融中使用金融理论、金融数据建模,以及Python。利用简单的经济学模型,更好地理解金融的基本概念和Python编程概念。利用静态和动态金融建模来解决金融中的基本问题,如定价、决策、均衡和资产分配等。学习对金融建模有用的Python软件包的基础知识,如NumPy、SciPy、Matplotlib和SymPy。
《脑-机接口原理与实践》是一本关于脑-机接口原理、方法和实践的专著。 《脑-机接口原理与实践》全面、系统、深入、具体地介绍了脑-机接口的基础、原理、实现方法和应用。全书非常重视脑-机接口的基础、原理和方法,着重指出了脑-机接口最重要的问题、信号采集问题、验证和宣传问题、可靠性问题:提出了脑-机接口六个重要的主题;详细论述了脑-机接口的设计、实施和操作.包括从大脑内和从大脑外采集脑信号、脑-机接口信号处理、特征提取和转化、脑-机接口硬件和软件、脑-机接口操作协议及脑-机接口应用。 此外,《脑-机接口原理与实践》特别注重原理与实际应用的紧密结合,在上述共性原理和方法的基础上,深入研究了现有的七种脑-机接口的具体原理和实现方法,分别是基于P300事件相关电位、基于感觉运动节律、基于稳态视觉诱发电位/慢变皮层
本书以德国高等门为例说明数据库的运用。我们有意选取这个简单的例子,是为了便于读者理解和记忆。为方便完成SQL部分的习题,本书还将我们在慕尼黑工业大学开发的数据库系统HyPer的Web界面提供给大家使用,网址是www.hyper-db.de。 本书也适合自学,因为所有的概念我们都尽量用易于理解的例子加以说明。 本书仅讨论“现代”数据库系统。对关系模型,我们尤其详细地讲解,因为关系模型现在占据主导地位,使用最为广泛。本书也涉及一些全新的发展趋势,例如主存数据库、大数据技术及应用、XML和云数据库的多租户管理等。 本书也包括数据库实现的内容,如DBMS的物理结构、多用户同步的实现及查询评估的恢复和优化方法等。只有掌握这些知识,才能在“硬核”的工业实践中系统地使用和优化数据库。 本书介绍的UML是一种面向对象的数据建模语言,它可以替代