《华为数据之道》 《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在优选170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
了解数据结构与算法是透彻理解计算机科学的前提。随着Python日益广泛的应用,Python程序员需要实现与传统的面向对象编程语言相似的数据结构与算法。本书是用Python描述数据结构与算法的开山之作,汇聚了作者多年的实战经验,向读者透彻讲解在Python环境下,如何通过一系列存储机制有效地实现各类算法。通过本书,读者将深刻理解Python数据结构、递归、搜索、排序、树与图的应用,等等。这一版重写了书中的示例代码,并对诸多内容做了修正。
《深入浅出数据分析》以类似"章回小说”的活泼形式,生动地向读者展现出色的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、优化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、相关数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。
商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项推荐技能。作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。本书分为6篇,共17章,其中第1篇是概念篇,讲述商业分析的基本概念;第2篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4篇是高阶篇,讲述如何应对复杂的商业难题;第5篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
本书提供了学习大数据技术及架构的一站式解决方案,覆盖了大数据生态圈中的完整技术体系,包括数据采集、数据存储、分布式资源管理、数据计算、数据分析、任务调度、数据检索、大数据底层基础技术和大数据集群安装与管理。 本书还介绍了多个企业级大数据应用案例(包括海量数据采集、“双十一”数据大屏、海量数据全文搜索系统等)和大数据平台架构案例(包括离线数据仓库架构、实时数据仓库架构、批流一体化数据仓库架构、数据中台架构、直播大数据平台架构、电商大数据平台架构等),可以帮助读者从全局角度理解大数据。 在本书中,技术内容基本上都是从零讲起的,结合原理和架构,以“图解+实战”的形式帮助读者轻松理解复杂的知识。 本书适合对大数据感兴趣的开发人员。无论读者是否接触过大数据开发,只要具备一定的Java开发
本书以面向应用为原则,深入浅出的介绍了oracle平台上使用pl/sql语言进行数据库开发的技术。通过大量的示例,详细介绍了pl/sql的语言特性、使用技巧,同时配以2个在实际工作中的示例来深入的剖析了pl/sql进行oracle开发的方方面面。 本书附带1张dvd光盘,内容为作者为本书录制的全程语音教学视频及本书所涉及的源代码。 本书共分为20章,分为5大篇。涵盖的内容主要有pl/sql语言基础、开发环境、变量与类型、控制语句、数据表的管理和查询、数据表的操纵、使用pl/sql的记录与集合、各种内置函数、游标、事务处理、异常处理、子程序、包、面向对象的开发等等技术点。通过示例性的代码,由浅入深,详细介绍了每一个技术要点在实际工作中的应用,对于各种技术要点的应用场合进行了细致的分析。 本书适合于使用pl/sql进行应用程序开
这是一本关于如何更好、更有效地进行数据可视化的书。本书分为3个部分。第1部分是创建有效可视化的通用指导原则,我们将了解受众的重要性,以及思考哪类图表能更好地契合他们的需求。第2部分是本书的核心部分,我们将定义和讨论80多张图表,这些图表分为八大类:比较、时间、分布、地缘、关系、构成、定性和表格。我们将看到各类图表是如何起作用的,以及它们的优缺点。第3部分整合了两块内容,一是构建数据可视化样式指南,二是如何结合不同的经验对图表进行重新设计。本书将指导你选择最适合展示相关数据的图表,并有效地传递你想传达的信息。
本书主要介绍从高维数据中感知、处理、分析和学习低维结构的基本数学原理和高效计算方法,系统地归纳了建模高维空间中低维结构的数学原理,梳理了处理高维数据模型的可扩展高效计算方法,阐明了如何结合领域具体知识或考虑其他非理想因素来正确建模并成功解决真实世界中的应用问题。本书包括基本原理、计算方法和真实应用三个部分:基本原理部分系统地介绍稀疏、低秩和一般低维模型的基本性质和理论结果,计算方法部分介绍解决凸优化和非凸优化问题的有效算法,真实应用部分通过实例演示利用前两部分的知识改进高维数据处理和分析问题的解决方案。本书适合作为计算机科学、数据科学和电气工程专业的高年级本科生和研究生的教材,也适合学习稀疏性、低维结构和高维数据课程的学生参考。
本书作为《基于Python的金融分析与风险管理(第2版)》一书的姊妹篇,整合了源于现实金融市场和日常实务的119个原创案例,涉及403项编程任务。本书囊括了丰富多样的金融场景,涵盖利率、汇率、债券、股票、基金、信托、资管、远期、互换、期货、期权等金融产品,还涉及商业银行、证券公司、期货公司、保险公司、信托公司、资产管理公司、基金管理公司、金融控股公司等不同业态的金融机构,尽可能覆盖金融实战中涉及Python编程的各种场景。本书着眼于从业者可能涉及的金融实战案例,并结合具体的职场角色给出了基于Python的高性能解决方案。通过阅读本书,读者能够全方位地了解金融市场的运作,深刻洞察处理各类金融工作的实战技能。
Python是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3篇。第1篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2篇介绍预测算法,该部分包含多元回归分析、复杂
本书详细介绍了Oracle、MySQL、PostgreSQL、SQL Server、DB2等各种关系数据库的SQL查询技巧和一些基础的SQL查询语句,并且通过短小精悍的实例,不仅讲解了如何插入、更新和删除数据,还介绍了如何检索记录、为查询结果排序、同时操作多张数据库表、查询元数据、处理涉及字符串和数值的操作、根据时间数据和日期数据进行运算、执行层次查询和区间查询等。随着多种SQL实现大量采用窗口函数,本书第2版针对相关实例做了优化,还新增了为数据科学家和算法工程师量身定制的实例。本书适合数据分析师、数据库管理员以及与SQL打交道的数据科学家和算法工程师阅读。
本书分为以下几个主要部分:第1-3章介绍方法和技术。在这些章节中,我们描述了一种性能调优方法。还提供了一些关于MongoDB架构和MongoDB提供的用于调查、监控和诊断MongoDB性能的工具的背景知识。第4章和第5章介绍应用程序和数据库设计。第6-10章介绍应用程序代码的优化。第11-14章讨论MongoDB服务器及其运行硬件的优化。
《MySQL是怎样运行的:从根儿上理解MySQL》采用诙谐幽默的表达方式,对MySQL的底层运行原理进行了介绍,内容涵盖了使用MySQL的同学在求职面试和工作中常见的一些核心概念。 《MySQL是怎样运行的:从根儿上理解MySQL》总计22章,划分为4个部分。第1部分介绍了MySQL入门的一些知识,比如MySQL的服务器程序和客户端程序有哪些、MySQL的启动选项和系统变量,以及使用的字符集等。第2部分是本书后续章节的基础,介绍了MySQL的一些基础知识,比如记录、页面、索引、表空间的结构和用法等。第3部分则与大家在工作中经常遇到的查询优化问题紧密相关,介绍了单表查询、连接查询的执行原理,MySQL基于成本和规则的优化具体指什么,并详细分析了Explain语句的执行结果。第4部分则是与MySQL中的事务和锁相关,介绍了事务概念的来源,MySQL是如何实现事务的,包括redo日志、undo日
本书教你如何从基于时间的数据(如日志、客户分析和其他事件流)中获得即时、有意义的预测。在这本通俗易懂的书中,作者通过带有注释的Python代码进行全面演示,你将学习用于时间序列预测的统计和深度学习方法。通过跟随书中的实例锻炼你的技能,你很快就会准备好建立自己的准确、有洞察力的预测。
ChatGPT能够辅助用户完成从数据收集、预处理、分析到报告撰写的全过程,大大降低了数据分析的门槛。本书共分为 12 章,内容包括ChatGPT 的注册与登录、提示词的设计、GPTs、数据的收集与预处理、特征工程、各类数据分析方法(包括对比分析、分组分析、回归分析、分类分析和聚类分析等)、数据可视化,以及如何利用 ChatGPT 撰写数据分析报告等。每章都提供了丰富的示例和实用技巧,旨在帮助读者掌握利用ChatGPT 进行数据分析的方法,提高数据处理和分析的效率。本书适合数据分析师、市场研究人员、高校师生、科研人员以及任何对数据分析感兴趣的读者。通过阅读本书,读者不仅能学习到如何使用 ChatGPT 进行数据分析,还能深刻理解数据分析的核心概念和应用场景,从而在实践中更加游刃有余。
本书全面介绍了预测性分析相关方法,不仅直观地阐述了相关概念,还给出了现实的示例问题和真实的案例研究—包括从失败项目获得的经验教训。本书理论和实践内容相对平衡,便于读者加深理解。全书共9章,外加一个附录。第1章为分析导论,第2章为预测性分析和数据挖掘导论,第3章介绍预测性分析的标准流程,第4章介绍预测性分析的数据和方法,第5章介绍预测性分析算法,第6章探讨预测性建模中的高阶主题,第7章介绍文本分析、主题建模和情感分析,第8章介绍预测性分析使用的大数据,第9章介绍深度学习和认知计算,附录展望了商业分析和数据科学工具的前景。本书适合计算机科学、数据科学和商业分析领域的相关从业人员阅读。
全书分为 8 章, 主要内容如下:第1章介绍学术论文插图绘制的规范性和基本原则以及学术论文插图的配色基础;第2章介绍绘制学术论文插图的主要工具,并重点介绍 Matplotlib、Seaborn、ProPlot 以及 SciencePlots 工具包的语法及其重要特征;第3章介绍学术论文中常见的单变量图及其绘制方法,包括直方图、密度图、Q-Q 图等;第4章介绍学术论文中常见的双变量图及其绘制方法, 具体包括误差线、柱形图、箱线图、相关性散 点图以及矩阵热力图等;第5 章介绍学术论文中常见的多变量图及其绘制方法,包括等高线图、点图系列、 三元相图、 3D 图系列以及 RadViz 图等;第 6 章介绍学术论文中常见的空间数据型图及其绘制方法,包括分 级统计地图、连接线地图、等值线地图以及子地图等;第 7 章介绍学术论文中常见的可视化图及其绘制方法,包括配对图系列、韦恩图、泰勒图
本书介绍了如何使用 Python 实现企业级的大数据全栈式开发、设计和编程工作,涉及的知识点包括数据架构整体设计、数据源和数据采集、数据同步、消息队列、关系数据库、NoSQL 数据库、批处理、流处理、图计算、人工智能、数据产品开发。 本书既深入浅出地介绍了不同技术组件的基本原理,又通过详细对比介绍了如何根据不同场景选择很好实践技术方案,并通过代码实操帮助读者快速掌握常用技术的应用过程,最后通过项目案例介绍了如何将所学知识应用于实际业务场景中。
在数字中国这一国家战略的牵引下,数据要素和数字化转型的研究和落地如火如荼。数据中台是企业开展数据要素相关实践和数字化转型的关键基础设施,本书在这样的时代背景下,以帮助企业“管好数据、用好数据”为宗旨,内容围绕数据中台架构与建设方法论、数据中台建设流程和内容、数据中台工程化交付、数据中台行业解决方案4个维度全面、深度展开。 本书一共17章,逻辑上分为四个部分: *第1部分数据中台建设方法与架构设计(第1~3章) 首先,从产生、定义、认知、相关概念、建设方法论、架构等方面对数据中台进行了全面介绍,帮助读者建立对数据中台的清晰认识和理解,熟悉数据中台的建设机制;然后,总结了企业数据应用成熟度评估、数据中台在各个行业的应用场景,以及数据中台的成功要素。 *第2部分数据中台建设内容与运营方法(第4~10章)
《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》由李杨著
本书由国内资深MySQL专家亲自执笔,国内外多位数据库专家联袂推荐。作为国内专享一本关于InnoDB的专著,本书的第1版广受好评,第2版不仅针对近期新的MySQL 5.6对相关内容进行了全面的补充,还根据广大读者的反馈意见对第1版中存在的不足进行了完善,全书大约重写了50%的内容。本书从源代码的角度深度解析了InnoDB的体系结构、实现原理、工作机制,并给出了大量很好实践,能帮助你系统而深入地掌握InnoDB,更重要的是,它能为你设计管理高性能、高可用的数据库系统提供不错的指导。 全书一共10章,首先宏观地介绍了MySQL的体系结构和各种常见的存储引擎以及它们之间的比较;接着以InnoDB的内部实现为切入点,逐一详细讲解了InnoDB存储引擎内部的各个功能模块的实现原理,包括InnoDB存储引擎的体系结构、内存中的数据结构、基于InnoDB存储引擎的表和页的物理存
《数据库系统概念》是数据库系统方面的经典教材之一,本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,使其体系更符合国内本科数据库课程教学要求。本书第1章概述数据库系统,第一部分(包括第2~6章)讲述关系语言的基本概念,第二部分(包括第7~9章)介绍数据库设计与应用程序开发技术,第三部分(包括第10~14章)介绍数据库管理系统实现的核心技术,第四部分(包括第15~17章)介绍大数据分析、区块链数据库、高级应用开发等高级话题。 本书既可作为高等院校计算机及相关专业本科生的数据库课程教材,也可供数据库领域的技术人员参考。
这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心内容的角度看,本书不仅讲解了如何在数据预处理、数据清洗、数据可视化等基础的数据分析环节使用AI工具,而且还讲解了如何在聚类分析、预测分析等高级的数据建模环节使用AI工具。阅读完本书,你将掌握以下知识:(1)数据分析、数据挖掘以及机器学习算法的基础知识。(2)ChatGPT等AI工具的注册及使用,以及如何使用这些AI工具学习Python。(3)使用ChatGPT辅助各种常见的数据操作和数