这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式和
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在最短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
这是一本跟数据科学和数据科学家有关的“手册”,它还包含传统统计学、编程或计算机科学教科书中所没有的信息。 本书有3个组成部分:一是多层次地讨论数据科学是什么,以及数据科学涉及哪些其他学科;二是数据科学的技术应用层面,包括教程和案例研究;三是给正在从业和有抱负的数据科学家介绍一些职业资源。本书中有很多职业和培训相关资源(如数据集、网络爬虫源代码、数据视频和如何编写API),所以借助本书,你现在就可以开始数据科学实践,并快速地提升你的职业水平。
本书是目前有关数据挖掘在数据化运营实践领域比较全面和系统的著作,也是诸多数据挖掘书籍中为数不多的穿插大量真实的实践应用案例和场景的著作,更是创造性地针对数据化运营中不同分析挖掘课题类型,推出一一对应的分析思路集锦和相应的分析技巧集成,为读者提供“菜单化”实战锦囊的著作。作者结合自己数据化运营实践中大量的项目经验,用通俗易懂的“非技术”语言和大量活泼生动的案例,围绕数据分析挖掘中的思路、方法、技巧与应用,全方位整理、总结、分享,帮助读者深刻领会和掌握“以业务为核心,以思路为重点,以分析技术为辅佐”的数据挖掘实践应用宝典。 全书共19章,分为三个部分:基础篇(~4章)系统介绍了数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的核心,以及实践中常见分析项目类型;实战篇(
本书比较全面系统地介绍了数据仓库(Data Warehouse)、联机分析处理(OLAP)、数据挖掘(Data Mining)等3个层次的基本概念、原理和应用技术。全书分成4篇,基本原理篇和设计建模篇的内容主要包括:数据仓库的基本概念、体系结构、创建过程、建模设计、项目规划,OLAP的基本概念、ROLAP和MOLAP的实现原理、OLAP模型设计,数据挖掘的基本概念、基本过程、常见模型和算法。产品介绍篇介绍了现有数据仓库厂商产品工具的基本情况,并对产品选择进行了一些分析。应用实践篇结合电信领域的实例,介绍了数据仓库项目在设计和实施中的关键问题。 本书的编写以理论联系实际为原则,内容系统全面,对于从事数据仓库研究、设计、开发等工作的人员具有宝贵的参考价值,对于需要了解数据仓库技术的系统集成人员、系统分析师、系统设计师也具有的参考价值。
零基础入门,让读者轻松、快速地掌握使用PowerBI创建和设计报表的整体流程。本书为读者提供了一个轻松愉快的阅读学习体验,全彩印刷、版式灵活、颜色清爽、内容优选、案例典型、视频赠送。本书包含大量案例,读者可以边学边练,书中的大多数3级标题以案例名称命名,既便于读者从目录中快速找到相应的案例,又能让读者了解每个知识点、每项技术的实际应用场景,从而实现技术与应用的无缝对接。为了便于读者学习和练习,本书附赠所有案例的源文件和重点案例的多媒体视频教程。本书适合想要学习使用PowerBI或PowerBIforExcel进行数据分析和报表制作的读者。如果读者对PowerBI不熟悉或从未使用过PowerBI,那么学习本书可以让您在短时间内快速掌握PowerBI的使用方法,并使用它来解决实际应用中的问题。对于有使用经验的读者来说,学习本书有助于梳理PowerBI的知
《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容, 按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
如果你是一名IT工程师,CTO希望你在一周内提交一份公司未来IT基础架构的初步建议;如果你是一位IT营销人员,客户需要你在一周内向他汇报未来大数据的大致技术方向;……在这个信息严重过剩的时代,一周内从浩渺的技术细节的海洋中抓住关键的技术脉络,并进一步提出有理论依据的技术思考,这几乎是不可能完成的任务。您是否想过阅读一本关于大数据的图书帮助解决如上问题?浩如烟海的大数据领域图书可以大致归纳为三类:类是描述大数据的应用前景与社会意义;第二类是研讨大数据作为一个大型IT的架构与技术架构;第三类是研讨大数据领域的具体技术,例如HADOOP相关的编程等。对于需要快速掌握大数据技术脉络,或者是需要对未来IT做思考的技术工作者来说,最需要的是第二类图书所提供的化知识。但目前业界大数据相关的书籍与资料,大多是类与第
本书是作者在物联网大数据平台等企业合作项目及 项目中多年实践的结晶。本书首先对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型及调度处理方法等核心概念与关键技术,并对物联网大数据存储、管理、计算及分析的基本概念与关键技术进行了剖析;其次介绍了物联网大数据管理与应用的感知数据库和平台产品,所介绍的产品来自作者所在团队的实际应用项目,大部分在物联网项目中得到了实践应用; 给出了适合读者在开源软件上动手实践的相关案例。
《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。 主要包括: 完成超大量交易的购物篮分析。 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。 使用超大基因组数据完成DNA和RNA测序。 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。 推荐算法和成对文档相似性。 线性回归、Cox回归和皮尔逊(Pearson)相关分析。 等位基因频率和DNA挖掘。 社交网络分析(推荐系统、三角形计数和情感分析)。