本书围绕精益创业展开讨论,融合了精益创业法、客户开发、商业模式画布和敏捷/持续集成的精华。本书汇聚了100多位创始人、投资人、内部创业者和创新者的成功创业经验,呈现了 30 多个极具价值的案例分析,可以为各阶段的创业者提供行为准则。 如果你是一名创业者,或者你是一名产品开发、产品管理、市场营销、公共关系和投资领域的商务专业人员,那么本书不容错过。
全书分为三大部分: 主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第1章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第2章我们比较了多种不同的数据模型和查询语言,讨论各自的适用场景。接下来第3章主要针对存储引擎,即数据库是如何安排磁盘结构从而提高检索效率。第4章转向数据编码(序列化)方面,包括常见模式的演化历程。 我们将从单机的数据存储转向跨机器的分布式系统,这是扩展性的重要一步,但随之而来的是各种挑战。所以将依次讨论数据远程复制(第5章)、数据分区(第6章)以及事务(第7章)。接下来的第8章包括分布式系统的更多细节,以及分布式环境如何达成一致性与共识(第9章)。 主要针对产生派生数据的系统,所谓派生数据主要指在异构系统中,如果无法用一个数
《Hadoop海量数据处理》从Hadoop的基础知识讲起,逐步深入Hadoop分布式文件系统(HDFS)和MapReduce分布式编程框架的核心技术,帮助读者全面、系统、深入地理解Hadoop海量数据处理技术的精髓。本书在讲解技术原理时穿插大量的典型示例,并详解两个典型项目实战案例,帮助读者提高实际项目开发水平。 《Hadoop海量数据处理》共15章,分为4篇。第1篇Hadoop基础知识,包括大数据概述、Hadoop概述、Hadoop环境搭建与配置;第2篇Hadoop分布式存储技术,包括HDFS概述、HDFS基础操作、HDFS的读写原理和工作机制、Hadoop 3.x的新特性;第3篇MapReduce分布式编程框架,包括MapReduce概述、MapReduce开发基础、MapReduce框架的原理、MapReduce数据压缩、YARN资源调度器、Hadoop企业级优化;第4篇项目实战,包括Hadoop高可用集群搭建实战和统计TopN经典项目案例实战。 《Hadoop海量数据处理》通俗易懂、案
本书结合理论和实践,由浅入深,全方位介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。 本书是一本权威、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的*发展和应用,程序员可以从中探
《Doris实时数据仓库理论与实战》系统地介绍了Doris的核心概念、架构原理和各项功能。全书共7章。第1章对Doris做了初步介绍。第2章重点介绍了Doris的数据表设计。第3章聚焦于Doris的数据导入。第4章介绍了Doris的数据导出和数据管理。第5章讨论了Doris中的数据更新和删除操作。第6章将读者带入Doris的进阶使用领域。第7章展示了Doris的生态扩展。通过《Doris实时数据仓库理论与实战》的学习,读者可以全面而深入地了解运用Doris构建高效、可扩展、实时数据仓库系统的方法,从理论到实践,从基础到进阶。 《Doris实时数据仓库理论与实战》适用于Doris开发人员和数据工程师,或有志从事数据仓库开发的技术人员。
以上ISBN信息均为平台自动生成,部分商品参数可能存在些许误差,商品准确参数详情可咨询客服。本店为新华书店总部直营店铺,所售图书均为正版,请放心购买! 注:预售品种请单独下单,与预售品种一起拍的品种默认和预售品种一起发货! 基本信息 书 名 Excel原理与技巧大全 出版社 *大学出版社有限公司 作 者 刘伟编著 出版时间 20211201 I S B N 9787301326183 定价 119 开 本 16开 185*260 装 帧 平装 版 次 1 字 数 997 (千字)
本书介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这本书还概要介绍了MapReduce、Hadoop和Spark。 本书主要内容包括: ■ 完成超大量交易的购物篮分析。 ■ 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。 ■ 使用超大基因组数据完成 DNA 和 RNA 测序。 ■ 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。 ■ 推荐算法和成对文档相似性。 ■ 线性回归、Cox回归和 皮尔逊 (Pearson) 相关 分析。 ■ 等位基因频率和 DNA 挖掘。 ■ 社交网络分析(推荐系统、三角形计数和情感分析)。
利用这本书,你将学习以下内容:了解如何选择Spark转换实现优化的解决方案。探索强大的转换和归约,包括reduceByKey()、combineByKey()和mapPartitions()。理解数据分区以实现优化查询。使用PySpark设计模式构建和应用模型。对图数据应用motif查找算法。使用GraphFrames API分析图数据。对临床医学和基因组数据应用PySpark算法。学习如何在ML算法中使用和应用特征工程。了解并使用实用的数据设计模式。
本书针对MySQL中高级用户,详细讲解MySQL高级使用技术。书中详解了每一个知识点以及数据库操作的方法和技巧。本书注重实战操作,帮助读者循序渐进地掌握MySQL中的各项高级技术。本书主要包括MySQL架构介绍、MySQL权限与安全、MySQL备份与还原、MySQL的高级特性、MySQL锁定机制、使用MySQLWorkbench管理数据库、SQL性能优化、MySQL服务器性能优化、MySQL性能监控、MySQLReplication、MySQLCluster实战、企业中MySQL的高可用架构实战。同时,本书还提供了所有示例的源码,读者可以直接查看和调用。本书适合有基础的MySQL数据库学习者,MySQL数据库开发人员和MySQL数据库管理人员,同时也能作为高等院校和培训学校相关专业师生的教学参考用书。
Spark SQL 是 Spark 技术体系中较有影响力的应用(Killer application),也是 SQL-on-Hadoop 解决方案 中举足轻重的产品。《Spark SQL内核剖析》由 11 章构成,从源码层面深入介绍 Spark SQL 内部实现机制,以及在实际业务场 景中的开发实践,其中包括 SQL 编译实现、逻辑计划的生成与优化、物理计划的生成与优化、Aggregatio算子和 Joi算子的实现与执行、Tungste优化技术、生产环境中的一些改造优化经验等。
本书是《Oracle . Edwards技术与应用丛书》系列丛书的基础篇,全书共分五章,通过介绍信息化的概念和内容,从而引出企业信息化的ERP的概念,及在企业实现ERP的软件应用系统Oracle . Edwards EnterpriseOne系统。进而以企业应用. Edwards EnterpriseOne为主线,通过一些模拟企业的使用场景,让读者学习. Edwards EnterpriseOne的基本应用功能、财务、分销和生产管理的使用方法、. Edwards的项目实施方法学和. Edwards OBA(Oracle Business Accelerated )(Oracle业务加速器)。本书兼顾需要Oracle . Edwards EnterpriseOne知识的各类相关读者,它是Oracle . Edwards EnterpriseOne系统的入门指南,通过阅读本书,读者可以对E有一个直观和感性的认识。