本书全面介绍车辆轨迹数据的处理、分析与可视化方法,并深入探讨了基于Python的车辆轨迹数 据处理技术,旨在帮助读者快速掌握车辆时空轨迹数据处理的基本方法和编程技巧,同时提供丰富的实际案例和技术解决方案,覆盖了从数据采集到深入分析的完整技术链条,是交通时空大数据领域车辆轨迹数据处理分析的全面指南。 本书内容涵盖从车辆轨迹数据的基本特征、采集原理到预处理、质量分析、可视化,再到高级应用如路网匹配、排放计算、多智能体仿真,以及特定案例分析如电动汽车充电需求识别和无人机航拍轨迹数据分析。 本书适合计算机相关专业的学生、数据分析师、研究人员以及技术开发人员阅读。
数字技术为企业的管理方式带来颠覆性变革,我们正在经历从依赖企业管理者解读数据并做出业务决策,到由算法通过计算数据做出分析和判断,然后自动指挥业务活动的转变。作为企业管理者,需要思考如何顺应时代趋势,利用数字技术,实现企业管理方式升级,提升管理效率,降低管理费用,提高企业竞争力。撰写本书的主要目的是,帮助企业体系化地推进数字化管理升级。本书的主要内容包括数字技术驱动企业管理方式升级、企业数字化管理体系的四条线、企业数字化管理体系建设七步法、企业数字化管理体系建设实战、企业数字化管理体系建设中的瓶颈与难点、企业数字化管理体系建设的技术架构,以及未来数字智能技术展望。
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
本书通过对多个实例的演示与讲解,详细介绍了Excel的*功能组件Power Query在数据查询与数据转换方面的主要功能。全书共分为8章,主要包括Power Query编辑器的基本功能,常见数据类型的查询与导入,对原始数据进行合并、拆分、计算、转换等数据整理操作,Power Query中M公式的编写方法等。 本书语言风趣,专注于具体的应用场景,而不拘泥于功能本身,图示清晰、可操作性强且便于查阅,能有效帮助读者提高Excel的使用水平,提升工作效率。 本书主要面向Excel的初、中级用户以及IT技术人员,对于Excel高级用户也具有一定的参考价值。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
本书通过选购笔记本电脑的案例引入数据包络分析(dataenvelopmentanalysis,DEA)的基本概念和模型,并运用简单的EXCEL模型让读者更易理解和运用DEA。本书着重阐述如何将DEA作为一种运营分析工具,进行绩效评估,找出基准标杆。探讨的主题包括:平衡的基准,昀佳实践,相对效率的概念及绩效提升。特别地,本书探讨的数据分析方法能够帮助一个组织重新审视它对生产效率高低的已有观点是否合理,并为组织不断改进提供指导。本书是市面上唯一本不要求读者具备线性规划和线性代数知识,就可以熟练应用DEA方法的DEA方法指导用书。
nbsp nbsp《Power BI 商业数据分析完全自学教程》是一本系统地讲解利用 Power BI 软件进行商业数据智能分析的自学宝典。《Power BI商业数据分析完全自学教程》以 完全精通 Power BI 为出发点,以 用好 Power BI 为目标来安排内容,全书共 5 篇,分为 14 章,循序渐进地介绍了 Power BI 的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。 第 1 篇为基础入门篇(第 1 章 ~ 第 3 章),主要针对初学者,从零开始,系统且全面地讲解了 Power BI 的入门知识点、基本操作及数据的输入和连接操作。 第 2 篇为数据处理篇(第 4 章 ~ 第 6 章),介绍了 Power BI 数据的整理操作、表格中行 / 列数据的管理,以及 Power BI 数据的高级处理、M 函数的使用等。 第 3 篇为数据分析篇(第 7 章 ~ 第 9 章),介绍了 Power BI 数据的建模操作及 DAX 语言的入门和进阶操作等。
《Python数据分析与大数据处理从入门到精通》主要讲解数据分析与大数据处理所需的技术、基础设施、核心概念、实施流程。从编程语言准备、数据采集与清洗、数据分析与可视化,到大型数据的分布式存储与分布式计算,贯穿了整个大数据项目开发流程。本书轻理论、重实践,目的是让读者快速上手。1篇首先介绍了Python的基本语法、面向对象开发、模块化设计等,掌握Python的编程方式。然后介绍了多线程、多进程及其相互间的通信,让读者对分布式程序有个基本的认识。第2篇介绍了网络数据采集、数据清洗、数据存储等技术。第3篇介绍了Python常用的数据分析工具,扩展了更多的数据清洗、插值方法,为*终的数据可视化奠定基础。第4篇是大数据分析的重点。首先介绍了Hadoop的框架原理、调度原理,MapReduce原理与编程模型、环境搭建,接着介绍了Spark框架原
数字经济已成为各国经济增长的新动能,并上升为国家发展战略,各国政府和人民对数据跨境流动安全问题的关注与日俱增。本书系统介绍了全球数据跨境规则的产生背景及其发展演变的脉络,重点分析了全球主要国家和地区数据跨境治理规则的内容和相互之间的异同,特别介绍了欧盟、美国话语权下的数据跨境流动规则及规则间的弥合,也介绍了其他国际性文件及十余个重点国家和地区的立法现状,同时展望了全球数据跨境规则的未来走向,在此基础上对我国的数据跨境流动治理规则现状进行梳理,并对其实施与完善提出了相关建议。本书语言平实易读,主要以法律法规、执法部门的解释性指南、判决书等一手资料作为参考,介绍分析了国内外立法现状和法律实践。
本书面向数学与工程计算,主要讲解了MATLAB 2017a软件基础、初等数学专题概要、高等数学基本问题、线性代数与矩阵论基本问题、概率论与数理统计基本问题、数值分析基本问题、CASIO fx 991CN X(中文版)函数科学计算器简介七方面的内容。本书适合大中专院校理工科学生学习使用,也可供广大科研人员、学者、工程技术人员及MATLAB专业人员参考。
本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
在新媒体时代,如果对新闻报道、网上搜索的结果或者所谓的 专家告知 不加思考地完全相信,那你就等着上当受骗吧! 本书围绕当今*受瞩目的大数据科学理论,通过日本政府公布的公开数据,集中针对访日游客的增加、舆论调查的可靠性、 安倍经济学 的成果、东日本大地震后的状况、相对贫困、失业率的下降、年轻人远离ХХ、全球变暖问题、减肥、恩格尔系数的上升等10个主题进行数据解读,帮助读者模拟体验数据读取方法,提高理解和分析数据的能力,挖掘出数据背后隐藏的真相。 作为 大数据分析 的超级入门书,即使不擅长数学、不了解统计学的人,读完本书也可以彻底掌握数据解读方法!
为顺应国内EPC 总承包工程推广的新形势, 提高企业风险管理水平, 普及工程保险知识, 特编写本书。 书中内容紧密结合国际先进工程保险理念, 对于在EPC 工程中涉及的工程险种、 安排、 采购、 合同后管理等问题均做了较为全面、 细致的分析。 同时, 列举了我国著名企业在海内外EPC 实践中实施保险策略的典型案例。本书可供从事EPC 项目或准备从事EPC 项目的公司领导、 项目经理、 风险管理人员、 监理、 咨询人员等作为岗位继续教育教材使用; 也可作为工程管理、 保险、 经贸专业在校研究生以及本科生的教学参考书或课外读物;也适合作为建设行业推行EPC 总承包模式进行系列培训的教材或参考用书。
本书主要作为教育领域从事教育大数据研究工作者的参考用书。本书从教育大数据的重要意义、国内外教育大数据的研究现状以及政策支持出发,对教育大数据的相关概念和内涵做阐述说明,介绍了教育大数据的技术、技术标准、治理与开放、风险管理与法律政策,重点阐述了教育大数据在教育领域的典型应用,包括教育大数据在课堂教育、校园管理、在线教育、开放远程教育、教育培训行业以及学生综合素质评价等方面的应用,*后提出教育大数据的发展趋势和机遇挑战。
R语言在心理语言学研究中的应用已经有相当长的历史,但什么情况下要对数据进行怎样的处理,模型应该如何构建,得到结果后应该如何科学地读取和规范地报告等问题仍未得到很好的解决,本书意在解决这些问题。 本书首先介绍了R语言基础知识、基本统计思路和初步数据整理,对经由真实眼动研究得到的数据进行清理、转换和描述性统计,以及数据可视化等操作,然后介绍了线性混合模型和最大随机效应,结果解释、整理和提升,power分析和Bayes分析在R语言中的实现;接着介绍了线性混合模型和重复测量方差分析结果的比较;最后介绍了多种眼动指标整理的方法。
《IBM SPSS数据分析实战案例精粹(第2版)》以IBM SPSS Statistics 24为工具,提供了医疗、金融、保险、汽车、快速消费品、市场研究、互联网等多个行业的数据分析/挖掘案例,基于实战需求,详细讲解了整个案例的完整分析过程,并将模型和软件的介绍融于案例讲解之中,使读者在阅读时能突破方法和工具的限制,真正聚集于对数据分析精髓的领悟。本书还一并提供案例数据的下载,读者可完整重现全部的分析内容。 《IBM SPSS数据分析实战案例精粹(第2版)》适合从初学者到专家各个级别的数据分析人士阅读,包括需要提升实战能力的数据分析专业人士,在市场营销、金融、财务、人力资源管理中需要应用数据分析的人士,从事咨询、科研等工作的专业人士,同时也可以作为各专业的本科和研究生学习数据分析应用的参考书。
本书以大数据为研究背景,系统分析了传统数据技术当前存在的问题以及面临的挑战,并对比了当前主流的面向大数据的数据库解决方案,在此基础上阐述了笔者的研究工作:基于MapReduce平台高处处理大数据的OLAP研究。书中反应了当前大规模数据仓库研究的热点和成果,值得大数据研究的人员参考和应用。
基于国家973和863相关项目成果,采用汤森路透德温特世界专利创新索引数据库作为统计数据来源,对信息存储领域的专利文献进行检索分析,从存储器件、设备、系统等层面,选取了目前信息存储领域中的多项重要技术,利用专利统计分析的方法对其发展态势进行了研究,特别是对信息存储领域相关专利进行宏观统计分析以及核心专利的具体分析,可以全方位了解信息存储技术的发展历程、专利的国家或地区分布、重要专利权人的竞争态势,为制定相关战略提供决策参考。同时结合华为、中兴、联想、浪潮、IBM、EMC、三星、美光等国内外知名企业的实际案例,从中国本土和全球的布局两个角度分别分析了专利产出、主要竞争者、热点技术和研发重点以及竞争态势,力求找到信息存储技术专利申请对技术产业化与企业发展的作用,供信息存储研发人员、专利工作者和
本书基于作者近几年来的研究开发成果及应用实践,对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型以及调度处理方法等核心概念及关键技术,并对物联网大数据存储、管理、计算与分析的基本概念和关键技术进行了剖析。本书还介绍了自行研发的面向物联网的ChinDB实时感知数据库系统以及针对云计算环境下物联网大数据管理与应用的DeCloud云平台,介绍了它们在智能交通、智能电厂、教育、安全监控等多个行业的应用。书中所有实例,均来自作者所在团队的实际应用,大部分在物联网项目中得到了实践应用。本书对物联网应用的开发以及两化融合、工业4.0环境下的大数据处理分析具有重要参考价值。
《数据密集型计算和模型》一书涵盖了数据密集型计算的体系结构、计算模型和编程方法,内容系统全面,着重介绍原理和方法。并配以图片,便于读者理解。 《数据密集型计算和模型》一书前半部分,重点介绍了数据密集型计算的概况,及其与高性能计算和云计算的异同、应用领域以及面临的挑战问题;巨量数据时代的计算机组织体系和技术;内存计算组织体系和技术;等等。后半部分重点介绍了几个常见的计算模型,如MapReduce模型、BSP模型和Dryad模型,并综合介绍了一些专门领域的计算模型,如All-Pairs模型等。 数据密集型计算是大数据时代的标志。《数据密集型计算和模型》一书借鉴了近年来在该领域的研究成果,有一定的创新,其出版较好地弥补了市场空白。