这是一本跟数据科学和数据科学家有关的“手册”,它还包含传统统计学、编程或计算机科学教科书中所没有的信息。 本书有3个组成部分:一是多层次地讨论数据科学是什么,以及数据科学涉及哪些其他学科;二是数据科学的技术应用层面,包括教程和案例研究;三是给正在从业和有抱负的数据科学家介绍一些职业资源。本书中有很多职业和培训相关资源(如数据集、网络爬虫源代码、数据视频和如何编写API),所以借助本书,你现在就可以开始数据科学实践,并快速地提升你的职业水平。
《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。 主要包括: 完成超大量交易的购物篮分析。 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。 使用超大基因组数据完成DNA和RNA测序。 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。 推荐算法和成对文档相似性。 线性回归、Cox回归和皮尔逊(Pearson)相关分析。 等位基因频率和DNA挖掘。 社交网络分析(推荐系统、三角形计数和情感分析)。
本书完整全面地讲述数据挖掘的概念、方法、技术和近期新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的参考书,是一本适用于数据分析、数据挖掘和知识发现课程的优秀教材,可以用做高年级本科生或者一年级研究生的数据挖掘导论教材。
《数据库系统实现(英文版)(第2版)》是关于数据库系统实现方面内容最为全面的著作之一,是美国斯坦福大学计算机科学专业数据库系列课程第二门课程的指定教材。书中从数据库实现者的角度对数据库系统实现原理进行了深入阐述。并具体讨论了数据库管理系统的三个主要成分 存储管理器、查询处理器和事务管理器的实现技术。斯坦福大学计算机科学专业数据库系列课程门课程的内容包括数据库设计和数据库编程。《数据库系统实现(英文版)(第2版)》的后两位作者Jeffrey D.UIIman和Jennifer Widom为该课程编写的教材《数据库系统基础教程》(A First Course iDatabase Systems)第3版的中文翻译版和英文影印版已由机械工业出版社出版。 《数据库系统实现(英文版)(第2版)》内容深入且全面,技术实用且先进,叙述深入浅出,是一本难得的高层次的教材,适合作
本书是普通高等教育“十一五”规划教材。《数据结构(第3版)》主要内容包括绪论、线性表和数组、栈和队列、树、图、排序、查找、数据结构程序设计等,最后,以Java语言为例,介绍了面向对象程序设计的数据结构。书中各章后附有自测练习题。《数据结构(第3版)》适用于高等职业学校、高等专科学校、成人高等学校、本科院校举办的二级职业技术学院,也可供示范性软件职业技术学院、继续教育学院、民办高等学校、技能型紧缺人才培养使用,还可供本科院校、计算机专业人员和爱好者参考。
堪称相关行业的“动向”和“密码”的“大数据”究竟是什么?为什么如此受众人关注?未来大数据将改变什么?本书以图解的方式为大家详细解读众人关注的焦点——大数据。 大数据不仅仅是行业的热门话题,也是各行各业关注的焦点。因为它不仅改变了社会,也改变了我们的生活和工作方式。大数据还可应用于各个领域,比如气象预测、预防犯罪、医疗领域等,其功能无比强大。读完本书,你将读懂什么是大数据!
本书不讲具体语法,只是以案例的形式介绍各种查询语句的用法。靠前~4章是基础部分,讲述了常用的各种基础语句,以及常见的错误和正确语句的写法,应熟练掌握这部分内容,因为在日常查询和优化改写中都要用到;第5~12章是提高部分,讲解了正则表达式、分析函数、树形查询及汇总函数的用法,这部分内容常用于一些复杂需求的实现及优化改写;很后两章介绍日常的优化改写案例,这部分内容是前面所学知识的扩展应用。如果您是开发人员,经常与Oracle打交道,那么本书可以帮助您处理复杂的需求,写出高性能的语句。如果您是运维人员,则本书可以帮助您更快地完成慢语句的改写优化。
本书分为部分,分别为大数据基础理论分析、基于海量语意规则的大数据流处理技术及大数据应用。 部分介绍大数据领域的主要基础理论,包括大数据基本概念、可编程数据中心、云文件系统、云数据库系统、大数据并行编程与分析模型、大数据智能计算算法、基于大数据的数据仓库技术、大数据安全与隐私保护,以及基于大数据的语意软件工程方法等。 第二部分介绍基于海量语意规则的大数据流处理技术,包括基于规则的大数据流处理介绍、语意规则描述模型、海量语意规则网及优化、海量语意规则处理算法及海量语意规则并行处理等。 第三部分主要介绍大数据的一些典型应用,包括:文化大数据、医疗健康大数据、互联网金融大数据、教育大数据、电子商务大数据、互联网大数据、能源大数据、交通大数据、宏观经济大数据、进出口食品安全监管大数据、基
为顺应国内EPC 总承包工程推广的新形势, 提高企业风险管理水平, 普及工程保险知识, 特编写本书。 书中内容紧密结合国际先进工程保险理念, 对于在EPC 工程中涉及的工程险种、 安排、 采购、 合同后管理等问题均做了较为全面、 细致的分析。 同时, 列举了我国著名企业在海内外EPC 实践中实施保险策略的典型案例。本书可供从事EPC 项目或准备从事EPC 项目的公司领导、 项目经理、 风险管理人员、 监理、 咨询人员等作为岗位继续教育教材使用; 也可作为工程管理、 保险、 经贸专业在校研究生以及本科生的教学参考书或课外读物;也适合作为建设行业推行EPC 总承包模式进行系列培训的教材或参考用书。
集Python、Excel、数据分析为一体是本书的一大特色。本书围绕整个数据分析的常规流程:工具熟悉-获取数据-数据熟悉-数据处理-数据分析-分析结果进行Excel 和Python 对比实现,告诉你每一个过程中都会用到什么?过程与过程之间有什么联系。这样一本书既可以作为系统学习数据分析流程操作的说明书,也可以作为一本数据分析师案头推荐的实操工具书,随时备查。本书通过对比Excel 功能操作去学习Python 的实现代码,而不是直接上来就学习Python代码,大大降低了学习门槛,消除了读者对代码的恐惧心理。适合刚入行的数据分析师,也适合对Excel 比较熟练的数据分析师,或从事其他岗位想提高工作效率的职场人。
Spark SQL 是 Spark 技术体系中较有影响力的应用(Killer application),也是 SQL-on-Hadoop 解决方案 中举足轻重的产品。《Spark SQL内核剖析》由 11 章构成,从源码层面深入介绍 Spark SQL 内部实现机制,以及在实际业务场 景中的开发实践,其中包括 SQL 编译实现、逻辑计划的生成与优化、物理计划的生成与优化、Aggregatio算子和 Joi算子的实现与执行、Tungste优化技术、生产环境中的一些改造优化经验等。 《Spark SQL内核剖析》不属于入门级教程,需要读者对基本概念有的了解。在企业中任职的系统架构师和软件开发人员,以及对大数据、分布式计算和数据库系统实现感兴趣的研究人员,均适合阅读《Spark SQL内核剖析》。
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 部分(~3章) 章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式和要点。 第二